
PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Vesper

Vector Embedded Super-Positioning Encryption Rules

Real-World Use & Structure Focused

This document is released for the marketing purpose only. Although it contains mostly public information, no part of this documentation shall be reproduced, copied, stored in a retrieval system,
or distributed in any form or by any means, including (but not limited to) electronic, mechanical, photocopying, and/or recording, without the permission from Si Mong Park and/or Enigma Shade, Inc.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Symmetric?
Asymmetric?

Why not take advantages of both?

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

AES vs. RSA: The Two Major Players

• Even since God created the world, there have been many cryptic texts for humans to decipher.
• As of today (21st century), there are two major parties called symmetric and asymmetric.

• The war between two parties continues, and their comparison summary is here:
(source: International Journal of Scientific Research in Computer Science, Engineering and Information Technology, Vol. 3, Issue 4, ISSN: 2456-3307)

• The debate continues because of:
• Their distinctive characteristics: slightly different uses

• Different resource (storage, performance, etc.) requirements

• Managerial issue: especially key management (storage and transfer)

• Government intervention: (no comment on this one)

• Commercial market trend: (also no comment on this one… oh, hello Intel®)

• Q: Is there any way to take advantages of (from) both sides?
• A: Yes, there is.

• Q: If ‘yes’, then does user have to do something or learn (yuk!) something?
• A: No, not at all.

• Q: Then, what is the answer?
• A: The answer is Vesper, a vector-based encryption algorithm with the revolutionary new feature called ‘Key-morphing’.

AES RSA

Approach Symmetric Asymmetric

Encryption Fast Slow

Decryption Fast Slow

Key Distribution Difficult Easy

Complexity O(log 𝑁) O(𝑁3)

Security Moderate Highest

Nature Closed Open

https://ijsrcseit.com/paper/CSEIT1833191.pdf

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

What is Vesper?

• General Feature
• Vector-based cipher: using moving vectors on lattice/grid

• Totally different concept of a ‘vector’ as used by the block ciphers
• Symmetric key cipher
• Not a block cipher – processes data ‘byte-by-byte’
• Uses 1024-byte (8192-bit) key (from version 1.3 and later)
• Cipher text size is twice (yes, ‘×2’) as big as plain text (for prototype version)
• Super fast: enough to handle (encrypt/decrypt) 4K HD data in real-time

• Fast enough to replace stream ciphers

• Special feature (that no other common ciphers can possibly provide)
• Search/match data (including texts) using cipher text (no decryption, no artifact)
• Perform calculation/evaluation using cipher text (no decryption, no artifact)

• Basic arithmetic (+, –, ×, ÷) and evaluation/validation (>, ≥, =, ≤, <) operations
• Key-morphing

• Convert cipher text from key A-based to key B-based without decryption (no artifact)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Vesper
Encryption
Process

Underlying

Logics & Mathematics

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Encryption Process

• Vesper utilizes well-known mathematical formulae and theorems.
• Vesper does NOT introduce any new ‘fancy’ theorem.

• Main calculations used are:
• Linear equation (1차방정식): 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

• Vector transformation (벡터변환): Translation (평행이동), Rotation (회전이동), etc.

• Chinese remainder theorem (CRT): 중국인의나머지정리

• XOR (exclusive-OR) bit operation (배타적논리합)

• Pseudorandom number generation (similar to the OTP bank key): 유사난수

AB…
(Plain Texts)

Input Data
입력문

Determine Vector Components
벡터성분결정

(a, b)

Vector Transformation
(translation, rotation, etc.)

벡터변환
(이동, 회전등)

Transform to Grid coordinate
격자좌표계로변환

0x4FF2156A, 0x5F001D42
0x23EA46F7, 0x6CD322F8
0xE1624C90, 0x96831EA6

…
…

Cypher Texts
암호문

(831527622, 461511379)
(624113785, 243371254)

…
…

List of grid positions
격자좌표

Bit-masks
(Pseudorandom numbers)
비트마스크 (유사난수)

0x3E961A78, 0x4BD264C1
0xA4240654, 0x342C5402

…
…

XOR

CRT를이용한격자좌표로의축변환
격자작성방법 (특허)

입력된값에따른벡터성분의결정
새로운개념에따른단순계산 (특허)

https://ko.wikipedia.org/wiki/%EC%9D%BC%EC%B0%A8_%EB%B0%A9%EC%A0%95%EC%8B%9D
https://ko.wikipedia.org/wiki/%ED%8F%89%ED%96%89_%EC%9D%B4%EB%8F%99
https://ko.wikipedia.org/wiki/%ED%9A%8C%EC%A0%84_(%EA%B8%B0%ED%95%98%ED%95%99)
https://ko.wikipedia.org/wiki/%EC%A4%91%EA%B5%AD%EC%9D%B8%EC%9D%98_%EB%82%98%EB%A8%B8%EC%A7%80_%EC%A0%95%EB%A6%AC
https://ko.wikipedia.org/wiki/%EB%B0%B0%ED%83%80%EC%A0%81_%EB%85%BC%EB%A6%AC%ED%95%A9
https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%82%AC%EB%82%9C%EC%88%98

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Search

&

Replace

Sure, it was considered impossible

because Vesper wasn’t invented yet.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Vector Embedded, Super-Positioned Plain Text

• Vectors in the Vesper universe contain more than just numbers.
• Existing cryptos manipulate plain texts to hide the real values; Vesper doesn’t.

• Vesper algorithm ‘transform’ the plain texts to create vectors that exist in the Vesper grid.
• Plain texts exist with cipher texts simultaneously but in different ‘super-positioned’ space.

• Just like the magnetic field exists along the path through where electric currents flows.

• The grid (lattice) coordinate system that Vesper employs efficiently hides the plain text.
• Vector analysis can reveal the plain texts in the Vesper grid system.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Search, then replace

• For Vesper, searching cipher text for specific data is not much different than doing so in plain text.
• For vesper’s simple – and fast – calculation, plain text is clearly visible within the Vesper lattice.

• Vesper’s byte search algorithm is different from normal search algorithm.
• It was designed for a different purpose in 90’s by Si Park. (A new patent will be applied for.)

• Replace is just a simple vector transformation.
• Once the target data is found, recalculating the vector components will translate the vector → replacement.

• ‘Original’ and ‘new’ data must have the same byte-length, of course.

word

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Instantaneous
Encrypted Data
Morphing

Changing Safe Lock Combination

Without Opening the Safe

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Key-morphing Overview

• Key-morphing converts cipher text ‘A’ to ‘B’ without decryption process.

• No data is saved and/or stored during the key-morphing process.
• No artifact left either on the disk or in the memory.

• Internally, it’s done by vector calculation.
• Simple calculation to move around the vectors that represent cipher text – very fast!

I love you!

49 20 6C 6F 76 65 20 79 6F 75 21

I l o v e y o u !

ASCII

Key A

Key B

7B 36 1A F3 52 9D B9 68 0E 27 C1

A2 6F 39 00 BE 77 F4 5C 22 E8 8A

Encrypt DecryptKey-morphing 49 20 6C 6F 76 65 20 79 6F 75 21

I l o v e y o u !

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Morphing? Like ‘Mystique’ from X-Men?

• Actually, YES!

• Morphing occurs ‘byte-by-byte’ within the CPU without storing or saving the intermediate data.
• No artifact.

• Instantly invalidates ‘old’ key.

• It is faster than decrypting and re-encrypting entire data.
• It also uses less disk space because the plain text data is NOT generated.

3 C M 7 U K G 2 9 L P 1 7 A H 2 F 3 3 8 Z T S W 5 V G 8 1 R 0 R

F C M 7 U K G 2 9 L P 1 7 A H 2 F 3 3 8 Z T S W 5 V G 8 1 R 0 R

F 9 M 7 U K G 2 9 L P 1 7 A H 2 F 3 3 8 Z T S W 5 V G 8 1 R 0 R

F 9 6 7 U K G 2 9 L P 1 7 A H 2 F 3 3 8 Z T S W 5 V G 8 1 R 0 R

F 9 6 7 3 I E 1 9 K Q Y J 5 H P Z S D D 8 A B 4 9 2 X N 4 6 0 R

F 9 6 7 3 I E 1 9 K Q Y J 5 H P Z S D D 8 A B 4 9 2 X N 4 6 H R

F 9 6 7 3 I E 1 9 K Q Y J 5 H P Z S D D 8 A B 4 9 2 X N 4 6 H S

…

Key A

Key B

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

So, how fast is the key-morphing process?

• Key-morphing is about 10% slower than normal encryption but is still faster than decryption.
• Encryption = 171.43 MB/sec.

• Decryption = 110.86 MB/sec.

• Key-morphing = 153.27 MB/sec. (≈ 9 – 12% slower than normal encryption)

• Still faster than normal process of decrypting and re-encrypting.
• Encryption time + decryption time = 8.51 seconds > 7.48 seconds = key-morphing time

(Time measured with the 572MB data file under desktop PC under Windows 11 Pro with i9-12900KF CPU.)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

How can morphing be … useful?

• The most powerful use will be the handling data at the lower communication channel.

• As the data pass the communication port, Vesper can morph the data into the new cipher text as they
come through.

• The original cipher text will NOT be stored anywhere in the receiving system.

• Invalidates the original ‘user’ key

• The ‘user’ key becomes a temporary ‘one-time-use’ key.
• The key in the receiver will be stored locally – easy and safe key management.

Data Communication Gate

F 4 D 2 1 N 7 6 Z K 0 R Q 9 3 L U 5 4 E E 9 2 3 A X T 5 7 1 U 6

Encrypt & Send

Bob
Key A

Morph Processor

Key B

Data Storage

Morph & Store

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Vesper’s Overall Communication Flow: User’s View

• Works just like a normal asymmetric key system
• Alice and Bob use different keys

• Both ‘1-time-use-only’ keys are issued by the server(s)
• Keys are always generated upon request and have time limit (expiration), and no two keys are the same.
• Publishing keys require the separate account/user validation process (which is NOT shown above).

Bob

10-1. Decrypt
10-2. Destroy Key

Key (B)

Cipher Text

Plain Text

Key (A)

1. Request Key

2. Publish Key

4. Transmit

5. Notify (You’ve got mail!)
Alice

Plain Text

Cipher Text

3-1. Encrypt
3-2. Destroy Key

Key (A)

6. Request key

Key (B)

7. Publish Key

8. Request Package

9. Deliver Package

Cloud / Server

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Overall Server-side Internal Process

• Server’s internal data, ‘Key (S)’ and the cipher text ‘CT (S)’, never leaves the server.
• Upon Key-morph, cipher text NEVER gets decrypted.

• Key-morph occurs byte-by-byte with no artifact. Even incoming and outgoing cipher texts (CT (A) and CT (B)) are NEVER saved in the server.

• External keys (Key(A) and Key(B)) are ‘one-time-use-only’ and will not be accepted by server ever again.

• Maximum security is guaranteed.
• Upon detecting any unusual activity, the entire data in the server will be Key-morphed instantly, invalidating ‘all’ keys existed before Key-morphing.

• Any user (including internal personnel) logs off, all data accessed/used by that user account will be automatically Key-morphed.

• Key-servers are physically separated into multiple servers, and each key will be randomly masked and stored separately to prevent attack, intrusion, and/or leak.

Bob

Key (A)

1. Request Key

2. Publish Key

4. Transmit

5. Notify (You’ve got mail!)Alice

6. Request Key

Key (B)

7. Publish Key

8. Request Package

9. Deliver Package

Cipher Text (A), CT (A)

Server

1-1. Request received

1-2. Generate user Key (A)

1-3. Save a copy of Key (A)
in Key-server

1-4. Transmit Key (A) to user

CT (S)Key (S)

4-1. Retrieve stored Key (A)
from Key-server

4-3. Key-morph incoming Cipher
Text (A) ‘Byte-by-byte’ to CT (S)

4-2. Generate server Key (S)

4-4. Store CT (S) in Data-server

6-1. Request received

6-2. Generate user Key (B)

6-3. Save a copy of Key (B)
in Key-server

6-4. Transmit Key (B) to user

8-1. Request received

8-2. Retrieve CT (S) from
Data-server

8-3. Retrieve Key (B) from
Key-server

8-4. Key-morph CT (S) to CT(B)

8-5. Transmit CT (B) to user

Key (A) CT (A) Key (B) CT (B)

Cipher Text (B), CT (B)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Illusion about size
The real-world cost of extra bytes wasted

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

16-bit vs. 32-bit Cipher Text

• Modulo operation is used to keep the value within a certain size, such as 16-bit or 32-bit.
• Congruent modulo (a.k.a. remainder, mod, ‘%’ operation) is always used to prevent values go over the limit.

• It ‘wraps’ around the value: it defines the ‘ring’ set: Z/nZ = { 0, 1, …, n – 1 }
• For example, Z/5Z = { 0, 1, 2, 3, 4 }: 13 (mod 5) = 3, 14 (mod 5) = 4, 15 (mod 5) = 0, …

• What is the meaning of comparing 16-bit cipher text and 32-bit cipher text?
• Larger the size of the unit data, broader/wider range of data can be represented. Thus, if a simple ‘guessing’ the plain

text based on cipher text, then, yes, 32-bit will lead to make more wrong guesses.

• Why 128-bit RSA complexity is said to be (at most) 2128 when guessing one 32-bit value already costs 232? It is because
that it is better to figure out the ‘key’ then guessing data (cipher text).

• Simple guessing is a ‘probability’: To guess 1 out of 32-bit value may take 232 guesses. It will take up to 2320 guesses to find out ten 32-bit values.

• Cryptanalysis is either (1) to crack the key or (2) to find a correlation between known data to closely approximate the next
one so that it will make ‘logical’ consequent guess and eventually will figure out all cipher texts.

• If we don’t do ‘brute-force’ to solve the key, the next best thing for the cryptanalysis is finding out the
pattern (correlation) among cipher text data.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Making It Vague

• Which one is easier to find out the pattern?

• When data are present in a larger and more sparse space, the pattern stands out more obviously.

• If possible, it is better to use the denser structure for ambiguity and vagueness.

• Smaller data footprint means less memory used, and it also leads to the faster computation.
• Calculation speeds between integers, floating points, and double precision floating points are dramatically different.

• Memory IO (read/write from/to memory) for larger sized data is also take longer than smaller sized data.

• Encryption/decryption requires billions and billions of calculations and IO: accumulates into a big performance difference.

• Prototype Vesper uses 16-bit data type for cipher text. It does not mean that 32-bit cannot be used;
it is just that 16-bit is sufficient for the algorithm while it makes cryptanalysis/attacking harder.

• Therefore, simply comparing 16-bit and 32-bit cipher texts does not have much value. Each cipher
can choose whatever more suitable type for its purpose.

0 D A C 0 0 E B 0 0 0 F C 0 0 0 0 0 A 0 0 0 0 B 0 0 0 0 C 0 0 0 0 D 0 0 0 0 E 0 0 0 0 F 0 0 0 0

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Is lim
𝑛→∞

10 𝑛 enough?
How complex do you want it to be?

How about as complex as you want it to be?

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Components for Vesper

• For each vector axis:
• Vesper can use ANY NUMBER of ‘axis coefficients’ for each axis. (Minimum of 2, no limit on maximum)

• The multiple of those numbers determines the length of that axis.

• For example, if 5 and 12 are used for coefficients of an axis, then the length of the axis is 60 (= 5 × 12).

• One of the coefficients may NOT be a prime and can even be an EVEN NUMBER. → This is a game changer!
• Most, if not ALL, legacy RSA-based ciphers use two prime numbers.

• Finding out one prime factor takes hundreds of years (and getting shorter); When one is found, the other is also found.

• Vesper uses prime number(s) and a non-prime natural number. So, finding one prime does not guarantee anything due to the combinatorial problem.

• E.g., let’s say that 7 and 15 are used for two axis coefficients, and an attacker somehow finds out the size of the axis is 105. Since 105 can be factorized into 3 × 5 × 7, there are
three possible combinations to figure out coefficients: (3 and 5), (3 and 7), and (5 and 7).

• As coefficients get bigger and/or more than two coefficients are used, the number of possible combinations uncontrollably explodes. (Look for ‘Little Omega Prime Function’)

• Vesper uses the ‘lattice/grid’ consist of at least two axes.
• Based on the prototype Vesper setup, the size of the ‘unit lattice’ is:

• Between 109 and 1015 using two axes with two coefficients (up to 1.263738E+16)

• Between 1012 and 1023 using three axes with two coefficients (up to 1.4206458E+24)

• Vesper is a configurable cipher by design. Coefficients and dimensional axes can be added for more complexity.

• These values are just for the lattice setup without actual vector! (On to the next page, please.)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Moving Vectors in Vesper

• Vesper uses vectors with random movements in the base grid/lattice.
• Prototype employs at least 40-byte worth of random factors/coefficients to determine the movement of each vector.

• Complexity is about 2.135987E+96.

• There is NO possibility for any two vectors to use same movement pattern in Vesper algorithm.
• Vesper uses well-known algorithm to make sure that no two vectors share the same pattern.

• Vesper does not use any ECB (electronic code book, a.k.a. lookup table).
• Along with the use of non-prime factor for the axis coefficient, no known attacking methods (including clear-text and chosen-cipher text) for RSA cipher

will work.

• The brute-force attack method may work only for a single key. Vesper can have at least 28192 possible variations for keys.

• Vesper is a ‘byte’ based cipher – not a block cipher. Thus, a formula for a single vector may not necessarily work for the
next.

• Prototype (with the minimum setup) Vesper formula itself has average complexity of 2.6992E+112.
• AES-256 is about 1.15792E+77.

• This does NOT include the complexity added by applying pseudo-random numbers (like Vigenère cipher) as well as the
combinations of axes coefficients from prime factorization of each axis.

• Just from the implementation of the prototype Vesper, its complexity far exceeds that of RSA and AES-256.

• Prototype Vesper uses two axes lattice with each axis employs two coefficients.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Truth about Security
How secure is the Vesper against cryptanalysis/attack?

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Security Features of Vesper

• Vesper uses 1024-byte key, which is 8192-bit key system.
• It is larger than AES-256: about 27936 times larger.
• Brute-force key attack against Vesper is, as a matter of fact, hopeless.

• It will take 7 × 1025 years for the Bitcoin network (yeah, THAT network) to crack the AES-128 key.

• It will take 2.29 × 1032 years for the largest quantum computer (as of 2020 with 65 qubits) to crack the AES-256 key.

• Vesper is designed to be configurable.
• Axis coefficients with the use of even number increases the level of security by introducing a combinatorial problem.
• Making multi-dimensional (axes) lattice makes axis coefficient combination problem even harder to solve.
• Number of axes coefficients and dimensional depth can be added and/or subtracted based on customer’s needs/requirements.

• Vesper uses vectors moving on the lattice/grid.
• The movement formula includes many coefficients/variable that are randomly calculated based on key.
• Vector formula for the prototype Vesper already has the complexity of 1026, and it does not include other complexities

mentioned above.

• On top of all, Vesper uses internal scramble algorithm to further enhance the security.
• The anti-temper for the key is already used; the anti-temper for the data will be added near future.
• Pseudo-random XOR mechanism, like Vigenère cipher, is also used.

• Conclusion: The cryptanalysis/attack against Vesper is near impossible.

https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/
https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

See them for yourself

• No trace of ECB (Electronic Code Book)

• Strong scrambling: combinatory (random + Vigenère) masking

(If you still can see a penguin or the flag, you really need to see your doctor, seriously.)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Cryptanalysis: Dimensional Coefficients

• Vesper Lattice: the most enigmatic feature
• Vesper lattice can have any dimension more than 2. (Vesper can have, say, 20 dimension. Well, theoretically.)

• Each dimension can have any number of dimension coefficients.
• E. g., for 2 dimension, each axis (x and y) has different dimensional coefficients.

• The multiplication of all dimensional coefficients for a single axis determines the size of that axis.

• Dimensional coefficients must be relative primes, and one can be an even number.
• Totally different from RSA’s two co-primes that is governed and proved to be volatile from Shor’s algorithm for quantum computing.

• Finding out the dimensional coefficients for all axes is crucial key to attack Vesper. However,
• The solution is harder than ‘subset sum’ problem, which is NP-hard.

• The first step is to determine the length of the axis. Then, finding out all dimensional coefficients is, well, amazingly time-
consuming.

• E.g.: If the length is 770, the divisors are 2, 5, 7, and 11. If attacker finds out there are three dimensional coefficients, the possible combinations are:

(2, 385), (5, 154), (7, 110), (11, 70), (10, 77), (14, 55), (22, 35) → Try for actual numbers like 1,001,417,796,266.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Cryptanalysis: Random Number Masking

• Vesper utilizes two step masking process.
• 1st Step: Random number masking

• For demo, there are more than 10 key numbers + same number of random number masks

• This is to scramble and to obfuscate the original data (plain text).

• 2nd Step: Vigenère masking
• Vigenère encryption algorithm is proven to be ‘impossible’ to solve mathematically.

• This step is to prevent and incapacitate frequency analysis against Vesper cipher text.

• There is no known ‘logical’ method to find out the random numbers.

• Vesper is NOT an RSA-based algorithm and is NOT covered by Shor’s algorithm.
• The only way to attack Vesper is the brute-force attack.

• UPDATE: Vesper encryption key is now (from version 1.3) 1024-byte (1MB) and provide:
• Various license types and expiration date
• Key-morphing validity checking
• Origin check
• Transfer of ownership
• Secure key-validation (SHA-256)
• and more!

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Vesper

vs.

Homomorphic
Encryption

Are they like apples and oranges?

Why does HE appear bigger than what it is?

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Ideal vs. Reality

• Difference between ‘academia’ and ‘real-world’
• ‘Infinity’ does not exist in the real-world: ALL numbers must be represented in the given data size (16-bit, 32-bit, etc.).

• Larger subset of the real numbers (floating-point numbers) cannot be represented in computers, by design.

• I.e. 0.1 is stored as 0.100000001490116119384765625 in 32-bit (IEEE-754).

• In other words, the fact that ’representing numbers in the computer’ itself introduces some errors already.

• Homomorphic Encryption (HE) intentionally injects ‘errors’, called ‘noise’, to enhance the security against cryptanalysis.
• How can we decide that how much ‘noise’ is enough? Are there certain criteria for these ‘noise’ to satisfy requirements for ALL cases?

• Under HE, the noise accumulates over time, and, thus, HE performs a procedure called ‘bootstrap’ to keep noise down.

• Extra process requires additional resources (i.e., memory and time) in real-world.
• Manipulation of data (e.g., multiplying some factors, bootstrapping, etc.) to reduce the errors may look simple in theory on a paper, but each process

requires additional resources for computers to store, to read, to write, and to calculate data. Moreover, as data gets larger, more resources are needed.

• Assurance against cryptanalysis: What happens when an attacker introduces larger errors to the data?
• How can HE find the abnormal level of errors in the encrypted data? Can bootstrapping resolve the error and keep the error under control?

• If HE detects any irregularity of the data, how does HE know if the error is intentional by customers or abnormal by attacker?

• Homomorphic encryption is a great field for further research and study.
• However, it does not necessarily mean that it is the most suitable for the applications, at least for the world as of today.

• The real-world applications must consider the performance, resources, and maintainability/sustainability.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

In Reality: Why is Vesper for the real-world?

• Performance: Vesper is super fast!
• Testing shows that the prototype (without any performance optimization) encrypts at 160+ MB/sec and decrypts at 100+ MB/sec.

• Tests were performed on the machine with Intel® i9-12900KF @ 3.19GHz, normal priority under Windows 11.

• The speed is fast enough to encrypt/decrypt 4K HD movies in real-time even without any optimization.

• No injected error or additional manipulations
• The calculation results are based on the exact data as they are provided without any hidden errors or adjustments.

• It is user to decide what to accept and how to interpret the result – not for computers or algorithms to do human’s work.

• Ability to calculate and evaluate the encrypted data in cipher text form
• Not only addition and multiplication, but Vesper can also perform validation (>, >=, !=, <=, <) without decryption of data.

• Ability to search/match for the data in cipher text form
• Text search and data matching can be done without decryption of data.

• Small size for the cipher text
• Basic configuration only ‘doubles’ (×2) the size after encryption.

• Using minimum numbers for the axes and dimension configuration.

• The size will increase as the number of dimensions and dimension factors increase.

• Additional dimensions and axes coefficients will increase the size; however, it is fixed amount and is still much smaller than HE.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Anonymity? Needs More Than Cipher Algorithm

• Keeping the personal information safe is NOT a job for the cipher algorithms entirely.
• Data need to be carefully structured and organized, and the database also needs to be carefully designed.

• Encrypt personal data into a file with the strongest known cipher then naming it with its owner’s name does not keep the anonymity under cover.

• The most important thing for the anonymity is how to structure/manage the data – not which cipher algorithm to use.
• ‘Encrypting name and not encrypting his/her DNA data’ is the same as ‘not encrypting name and encrypting DNA data.’

• The servers and their architecture must be designed and setup to keep the information safe.
• Without a gun, the bullet is just a piece of metal, no matter how great the bullet is.

• Cipher algorithm must provide certain features to keep servers secure and efficient while fast for service.
• Vesper is the only solution for the information security: for data itself AND for the ironclad server design.

• Key-morphing feature of Vesper satisfies:
• Total isolation of internal data

• Limiting the keys to be valid only for the external data

• Instantly invalidating leaked keys

• Hiding the matching keys from data

• Cipher text searching capability of Vesper enables servers to keep data and key indexes always encrypted.

• Intruders cannot do anything as the information is encrypted and useless without correct key.

• Even if hacker steals the data, server can perform key-morphing to change the key and data instantly.

• All those capabilities need to be performed by servers but not by the cipher algorithm. It is a management matter.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Performance

Numbers That Matter

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Average Performance Summary

• Encryption: 160 – 170 MB/sec.

• Decryption: 100 – 110 MB/sec.

• Key-morphing: 140 – 150 MB/sec.

• Simple search: 2,000,000 fields/sec.

• RDBMS query: 3,000,000 fields/sec. for 7 queries
• Result recording and calculation are done by Vesper core library.

• RDMBS configuration file parsing and Vesper component configuration are performed by the demo program.

• NOTE:
• Test result may vary based on the system configuration.

• Tests were performed on the machine with Intel® i9-12900KF @ 3.19GHz, normal priority under Windows 11 Pro 64-bit.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Analysis result for 1 rule for 100,000 people (6 fields per person)

Vesper RDBMS Demo & Performance

100,000 People Data
(generated)

Encrypted

Simple
Configuration

Analysis results for 24 rules for 100,000 people (6 fields per person)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Performance Shootout

• Test used data of 100 people’s health data, and each person’s record contains 10 fields: name, sex,
age, height, weight, systolic/diastolic blood pressure, sleep hours, phone number, and address.

• All data are encrypted with Vesper 1.3rc2 – no data is stored decrypted.

• No plaintext data preprocessing is applied; characters and numbers are mixed as shown above screen shot.

• 8 rules total: 7 rules to calculate average and standard deviation along with maximum and minimum value records.

• Result: 0.014365 seconds (= 69,613.64 data per second)

100 People Health Data (generated)Configuration File

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Push the Limit with 1,000,000 People Health Data

• Performed analysis with 1,000,000 people’s
health data (generated).

• 10 fields for each person

• Total of 10,000,000 data fields

• Data file size (encrypted) = 396MB (with key)

• Performance measured:
• Encryption: 1.16 seconds

• Analysis: 3.288853 seconds

• Total: 4.448853 seconds

• Test system specification
• Intel i9-12900KF @ 3.19GHz

• 32GB memory

• Windows 11 Pro 64-bit

• No plaintext (or part of it) was written on
the storage and/or memory during process.

Time for Encryption

Time for Analysis

Configuration File

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Performance Comparison with Homomorphic Encryption

Company ‘C’ Vesper 1.2c

Bootstrap Key Generation 37 seconds 0

Encrypting Data 6.27 seconds 0 (unmeasurable)

Analysis 141.81 seconds 0.022377 seconds

Total 185.08 seconds ≤ 0.1 seconds

• Vesper does not require any plaintext preprocessing before the
calculation.

• Vesper only used 40.7KB of space.

• It includes the Vesper encryption key (1MB).

• Company ‘C’ product used (at least) 6.6GB of space.

• Notes

• Measure for the machine learning was not performed for Vesper.

• The resource and calculation time data are from ‘NAVER Cloud Platform’ and may not
contain the up-to-date information.

Source: https://guide.ncloud-docs.com/docs/en/hha-example

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Unreal Security

for

Embedded System

Solution for those who worry about

‘Anti-temper’

on the system level

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Security of Executables and Current Solution

• Only the data (stored and/or transmitted) are encrypted but not the executable ‘application.’
• Most security requirements are for the static data.

• Application software contains ‘how to handle’ information about proprietary or even classified system devices.

• High-level security applications require multiple level of security barriers (even physical destruction).
• ‘Leaked’ software may be analyzed by competitors/adversaries → may expose proprietary information and technology.

• Regardless of the sophisticated authorization method to ‘unlock’ the obfuscation (hiding), the codes are there.

• Software can be loaded encrypted and can be decrypted before use. However, the problem is that:
• There is no way to check and verify the final ‘loaded’ software is ‘not polluted’ while encrypted.

• Software verification process, such as hash check, requires the software to be decrypted and stored (in memory) before execution.

• It is impossible to delete/change the loaded software after release even if the authorization data has been compromised.
• Once the key (passwords) needs to be changed or has been compromised, the prepared encrypted software set becomes useless. The entire certification

processes must be done again even when there is no single line of code change.

• Embedded system generally does not have extra resources (memory/storage and processor power) to handle encryption.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Example Scenario 1: The latest and greatest AI car

• Situation
• A highly secure embedded system (for this AI car) powers up, tests and initializes system, starts system services, loads OS,

and system software checks and identifies the equipped devices.

• The cars of this model can be equipped with wide range of sensors/devices, from generic to the top-of-the-line ones that
no other competitor can release with their cars yet. Thus, the control mechanism for the device and the information
regarding data and timing specs are highly proprietary (or even classified).

• System needs to load the application(s) based on the equipped devices. Each application handles the specific device and
may even contain some AI algorithms specific for the device.

• Vesper can:
• Search the target marker for the device directly from the encrypted data block so that proper application can be loaded.

• Request the verification hash info from the authentication server to verify the application is ‘clean’ as released.

• When the car powers down, during the shutdown process, Vesper can key-morph the data to invalidate the ‘old’ key
and/or to prevent hackers from intrusion during sleep. The new key will not be stored locally (in the car) and can only be
downloaded from the server once the owner gets authenticated.

Fake data Application 1Marker A Marker B Application 2 Marker C Application 3Fake data Fake data Marker D Application 4Fake data Fake data

(* Sizes are not in any meaningful scale.)

Vesper-encrypted data loaded onto the memory of an embedded system

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Example Scenario 2: Real-time Update of Security Data

• Situation
• Application itself is not sensitive or proprietary, but the data parts are. (personal data, location info., filter values, etc.)

• Most embedded systems have data mapped into the specific memory location.

• As situation changes, some crucial data parts must be updated/changed. (Such as target change, timeline update, etc.)

• Just as a routine security procedure, some encrypted data in the memory needs to be re-encrypted with updated keys.

• Vesper can:
• Transmit/receive encrypted data and override parts of the data dynamically

• Utilize obfuscated (fake) regions in the update data to enhance the security (possible interception during transmission)

• Transform the encrypted data with the new key using key-morph
• Vesper does NOT need an additional resource (memory) to convert/morph encrypted data.

Heap Memory (before)

Sensitive data

Morphed

Loaded

Heap Memory (after)

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Example Scenario 3: Secure Boot

• Situation
• Embedded system is most vulnerable while powered down.

• Upon power up, bootloader cannot easily verify the authenticity of the system application.
• Checksum and/or hash checking are static and must be updated/changed every time when the application get updated/changed.

• If the intruder is knowledgeable enough to replace the application, he/she can easily bypass the checksum/hash checking.

• Verification using encryption can be costly and may require additional resources (memory).

• The static decryption program can easily be fooled if the original key is replaced with the hacked one for the hacked application.

• Vesper can:
• Key-morph the entire application before shutdown and hide the randomized key within the fake block.

• Encrypted application and its key change every time the system gets turned off.

• Perform key-morphing of the entire application periodically to invalidate current key and replace with the new one.

• Decrypt the entire application upon power up after key verification.
• Vesper is very light-weight and does not require ‘unexpected’ additional resource.

• Periodic key-morphing can be performed as a background service while the system is running.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Impenetrable Server Architecture using Vesper

Citadel Server Architecture

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Secure Server Architecture – ‘Citadel’

• All servers within the system are independent from each other.
• All servers must go through the authentication process before communicating, and ‘authentication server’ verifies and grants access privileges.

• Gate control server monitors and controls all traffics between servers.

• Connectors and other small helper objects are not shown.

Interface
Server

Data
Server

Data Index
Server

Gate Control Server

Key Shadow Server A Key Shadow Server B

Key Index Server

Authentication
ServerUsers

Operator

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Responsibilities of Servers in Detail

• Interface Server (a.k.a. Frontend)
• Only gate between external and internal worlds

• Gate Control Server
• Monitor and control all internal and external communication between users and servers
• Verify communication using checksum or MAC (message authentication code) to prevent intrusion

• Authentication Server
• Verify and grant/deny accessibility of users and servers to access specific resource and/or data
• Servers cannot directly access other servers and/or their components even if they are parts of the Citadel system.

• Key Management Server (Key Server)
• Key Index Server keeps track of all the list of the keys
• Key Shadow Servers consist of two (or more) servers that keep the XOR masked key data.

• All masked key data must be XORed to retrieve the real key.

• Data Index Server
• Keep the list of the data and their key codes stored in the Data Server

• Data Server
• Store all data encrypted
• Keys for the stored data are stored and managed by Key Server.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Security of Citadel Server System

• No single-point failure
• Most, if not all, current popular servers (database, web server, etc.) work as a ‘single’ entity of its own.

• Once intruded, all data are available for grab.

• All data are encrypted – No data is stored unencrypted
• Leaked/stolen data is effectively useless without proper key.

• Keys and encrypted data are stored separately.

• Keys are masked and stored distributed over multiple servers.
• Unless hackers take the entire ‘physical’ Citadel servers, it is impossible to unmask key

• Finding the right key is another problem. Even system operators cannot find the right key for a data.

• Vesper provides Key-morphing feature.
• Once intrusion and/or unauthorized access are found, Vesper can invalidate selected (or even entire) keys instantly.

• The goal of the Citadel architecture is to make it impossible to manually search and retrieve data.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

Securing Digital Rights for Multimedia Contents

Media DRM Server System

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

DRM (Digital Rights Management) Using Citadel

• Streaming Key Management
• Vesper is super fast; encryption and decryption can be done in real-time even for the 4K HD movies.

• Different key will be assigned for individual customer for the same media.

• Combined with Digital Steganography
• Special ‘hidden’ signature can be injected/embedded into the media – hidden signature can be used to trace the origin.

• Each user will use the unique Vesper key, and it can be used to identify the source of the illegal distribution of the digital media.

• Hidden code can be embedded to personalize and/or customize for individual customer.
• Personal message for family members, friends, lover, etc.

• Personalized greetings for customers (fans)

• Hidden sensitive message for specific individuals or groups

• Steganography can be used for image, music files, movies, and any other digital media formats.

• Replacement for NFT (non-fungible token)

• Proof of Authenticity
• Use with steganography and hash algorithms, such as SHA-256, the ownership and authenticity can be easily verified.

PROPRIETARY DATA: Duplication, copy, reproduction, and/or distribution of the part(s) of and/or entire document is prohibited without written permission from Si Mong Park.

OTT Contents 서버와 Citadel 서버간연동의예
User OTT 컨텐츠서버 Citadel Interface Server

1: 컨텐츠 사용요청 (사용자 ID, 컨텐츠 ID)
2: 사용자 인증

7: Vesper 라이선스 발급 (Vesper 라이선스 서버용 토큰)

10: 사용 승인 (컨텐츠라이선스 토큰)
9: 사용인증 토큰등록 (컨텐츠라이선스 토큰)

11: Vesper 사용요청 (사용자 ID, 컨텐츠 라이선스 토큰)

16: Vesper 사용승인 (Vesper 키, Vesper 라이선스사용자용 토큰)

17: 컨텐츠 전송요청 (사용자 ID, Vesper 라이선스 사용자용 토큰)

3: 신규 키요청 (사용자 ID, 컨텐츠 ID)

12: 컨텐츠 라이선스 토큰인증

4: Vesper 신규 키요청 (컨텐츠 ID)

8: 컨텐츠 라이선스 토큰생성

18: 사용자 인증

20: Vesper 라이선스 토큰인증

24: Vesper 키발급 (Vesper 키)25: 컨텐츠 사용승인

26: 컨텐츠 수신준비완료 27: 컨텐츠 암호화

28: 컨텐츠 전송 컨텐츠 암호화(27) 및전송(28)은
반복적으로 이루어진다.

Citadel Key Server

5: 키생성및등록

6: Vesper 키발급 (Vesper 키)

13: Vesper 키사용요청 (컨텐츠 ID)

15: Vesper 키사용승인 (Vesper 키)

14: 키확인

19: Vesper 라이선스 인증확인 (사용자 ID, Vesper 라이선스서버용 + 사용자용 토큰)

21: Vesper 키사용요청 (컨텐츠 ID)

23: Vesper 키사용승인 (Vesper 키)

22: 키확인

	Slide 1: Vesper Vector Embedded Super-Positioning Encryption Rules
	Slide 2: Symmetric? Asymmetric?
	Slide 3: AES vs. RSA: The Two Major Players
	Slide 4: What is Vesper?
	Slide 5: Vesper Encryption Process
	Slide 6: Encryption Process
	Slide 7: Search & Replace
	Slide 8: Vector Embedded, Super-Positioned Plain Text
	Slide 9: Search, then replace
	Slide 10: Instantaneous Encrypted Data Morphing
	Slide 11: Key-morphing Overview
	Slide 12: Morphing? Like ‘Mystique’ from X-Men?
	Slide 13: So, how fast is the key-morphing process?
	Slide 14: How can morphing be … useful?
	Slide 15: Vesper’s Overall Communication Flow: User’s View
	Slide 16: Overall Server-side Internal Process
	Slide 17: Illusion about size
	Slide 18: 16-bit vs. 32-bit Cipher Text
	Slide 19: Making It Vague
	Slide 20: Is limit as n goes to infinity of , open paren 10 , close paren to the n enough?
	Slide 21: Components for Vesper
	Slide 22: Moving Vectors in Vesper
	Slide 23: Truth about Security
	Slide 24: Security Features of Vesper
	Slide 25: See them for yourself
	Slide 26: Cryptanalysis: Dimensional Coefficients
	Slide 27: Cryptanalysis: Random Number Masking
	Slide 28: Vesper vs. Homomorphic Encryption
	Slide 29: Ideal vs. Reality
	Slide 30: In Reality: Why is Vesper for the real-world?
	Slide 31: Anonymity? Needs More Than Cipher Algorithm
	Slide 32: Performance
	Slide 33: Average Performance Summary
	Slide 34: Vesper RDBMS Demo & Performance
	Slide 35: Performance Shootout
	Slide 36: Push the Limit with 1,000,000 People Health Data
	Slide 37: Performance Comparison with Homomorphic Encryption
	Slide 38: Unreal Security for Embedded System
	Slide 39: Security of Executables and Current Solution
	Slide 40: Example Scenario 1: The latest and greatest AI car
	Slide 41: Example Scenario 2: Real-time Update of Security Data
	Slide 42: Example Scenario 3: Secure Boot
	Slide 43: Citadel Server Architecture
	Slide 44: Secure Server Architecture – ‘Citadel’
	Slide 45: Responsibilities of Servers in Detail
	Slide 46: Security of Citadel Server System
	Slide 47: Media DRM Server System
	Slide 48: DRM (Digital Rights Management) Using Citadel
	Slide 49: OTT Contents 서버와 Citadel 서버 간 연동의 예

