A g
1
0
' 0
0
1

O OO0 ™0 O
ocoocooco~—g
COoO~——0O~—C
VOO —O00OC
——_—O OO~ O
—FO O~ ~C
B E-T-Ron k- R - s

1
0. 0 00400

o110

00 L 4 L) '.‘ mm

v = g g v O £ G

N A-oO0~o0Or~ 3 ¥ E! :

<« f - Joo~ocooo

- v ..‘101“010.0'. - R :

. - SO~ O =@~ O™ o - == o= . : .

- - |- cOm—0OCa OO ™ = = == L -+ 3 :

- - . - O e - - —— ®) < 9 3 _

® s s - = - . O -0 — v — 3 R “
. = P . ————0 00~ CR-R-N-T B 3 4 !
- - ° - - - 0tl°c.....-°¢l°v —_O -t QO - g .
- s = - - - —_——— O OO~ TOO ~ 3 A
.- = OO0~ 0O~O ————— -0 O0 o R _

- D000 —O0.— — oo - <

1
18

: o000 CcOoOdkr O~ —T Q@ - - 4 m “
: ed ~—O-O=~—r—o Rt K- Rt ik 3 5 _
. - Q- rr—r—e—ro - -0 ik 3 &
> =] (= D v v v v - O nla
—
- o o CO~ft ~r0oO -~
- - - ~OOId-0O0—O— ."
so s O-o @O ~——Or - :
o - ——— O ~oro~—- N
° r- —ojdo~oC~ooO- n
._7%001010 R i
0 1 - {000 e g : 8
' - ") AR
. i | H
Q=3 ﬁ ' _ 4
T g |1 3
i B S | n | ! N\
—r 0. g i | - --b
— D e C _
oo gi—odsStooroooo—boo +f Too— —ep—————
el = C - [4 VJ. 2 — O 09
——cdesal—————— + S —— e
T — — &

Encryption Rules

itioning

VVector Embedded Super-Pos
Real-World Use & Structure Focused

or distributed in any form or by any means, including (but not limited to) electronic, mechanical, photocopying, and/or recording, without the permissién from Si|[Mong Park and/or Enfgma Shade, Inc.

This document is released for the marketing purpose only. Although it contains mostly public information, no part of this documentation shall be‘reprduce'd, co‘pied, stored in a retrie

Vesper

Symmetric?
Asymmetric?

Why not take advantages of both?

AES vs. RSA: The Two Major Players

* Even since God created the world, there have been many cryptic texts for humans to decipher.
* As of today (215t century), there are two major parties called symmetric and asymmetric.

* The war between two parties continues, and their comparison summary is here: _““
(source: International Journal of Scientific Research in Computer Science, Engineering and Information Technology, Vol. 3, Issue 4, ISSN: 2456-3307)

. Approach Symmetric Asymmetric
* The debate continues because of: _
) o) o)) Encryption Fast Slow
* Their distinctive characteristics: slightly different uses)
)] Decryption Fast Slow
* Different resource (storage, performance, etc.) requirements o ,
oo . Key Distribution Difficult Easy
* Managerial issue: especially key management (storage and transfer) _
) i) Complexity O(log N) O(N?3)
* Government intervention: (no comment on this one) _ .
. . Security Moderate Highest
* Commercial market trend: (also no comment on this one... oh, hello Intel®)
Nature Closed Open

Q: Is there any way to take advantages of (from) both sides?
* A:Yes, thereis.

Q: If ‘yes’, then does user have to do something or learn (yuk!) something?
* A:No, not at all.

Q: Then, what is the answer?
* A:The answer is Vesper, a vector-based encryption algorithm with the revolutionary new feature called ‘Key-morphing’.

https://ijsrcseit.com/paper/CSEIT1833191.pdf

What is Vesper?

* General Feature

Vector-based cipher: using moving vectors on lattice/grid
* Totally different concept of a ‘vector’ as used by the block ciphers
Symmetric key cipher
Not a block cipher — processes data ‘byte-by-byte’
Uses 1024-byte (8192-bit) key (from version 1.3 and later)
Cipher text size is twice (yes, ‘x2’) as big as plain text (for prototype version)
Super fast: enough to handle (encrypt/decrypt) 4K HD data in real-time

* Fast enough to replace stream ciphers

 Special feature (that no other common ciphers can possibly provide)

Search/match data (including texts) using cipher text (no decryption, no artifact)
Perform calculation/evaluation using cipher text (no decryption, no artifact)

* Basic arithmetic (+, —, %, +) and evaluation/validation (>, 2, =, <, <) operations
Key-morphing

* Convert cipher text from key A-based to key B-based without decryption (no artifact)

o

1.0

1

C

0o

Encryption Process

(831527622, 461511379) Ox3E961A78, ©x4BD264C1
(a, b) (624113785, 243371254) 0xA4240654, 0x342C5402
‘ \B L N
. Bit-masks
(Plain Texts) List of grid positions
AXZE (Pseudorandom numbers)
o H|E OfA3 (RAHE)
Vector Transformation
Input Data Determine Vector Components (translation, rotation, etc.) Transform to Grid coordinate XO R
gee HEI N 2 VA ARtztEA 2 e
= [y
QlEd &l ZHo| 2 HE| A 20| AR Ols, 218 5) CRTES 0|23t AXIXIHZ | =H3H
H T3 HA — omr—| 2 o = o o[el = =3 =t
H22 7H g0l 2 the AL (EH) ZXIRFAL Y (E3)

Ox4FF2156A, ©x5F001D42
Ox23EA46F7, ©x6CD322F8
OxE1624C90, ©x96831EA6

* Vesper utilizes well-known mathematical formulae and theorems.

* Vesper does NOT introduce any new ‘fancy’ theorem.
Cypher Texts

* Main calculations used are: 9=
e Linear equation (1A} &8 A ax + by +¢c =0
* Vector transformation (2l E{ H2H): Translation (2 2 0| =), Rotation (2|7 0] &), etc.
* Chinese remainder theorem (CRT): &= 22| LIHX|]
* XOR (exclusive-OR) bit operation (Hi Ef & =2[gh)
 Pseudorandom number generation (similar to the OTP bank key): At h=

https://ko.wikipedia.org/wiki/%EC%9D%BC%EC%B0%A8_%EB%B0%A9%EC%A0%95%EC%8B%9D
https://ko.wikipedia.org/wiki/%ED%8F%89%ED%96%89_%EC%9D%B4%EB%8F%99
https://ko.wikipedia.org/wiki/%ED%9A%8C%EC%A0%84_(%EA%B8%B0%ED%95%98%ED%95%99)
https://ko.wikipedia.org/wiki/%EC%A4%91%EA%B5%AD%EC%9D%B8%EC%9D%98_%EB%82%98%EB%A8%B8%EC%A7%80_%EC%A0%95%EB%A6%AC
https://ko.wikipedia.org/wiki/%EB%B0%B0%ED%83%80%EC%A0%81_%EB%85%BC%EB%A6%AC%ED%95%A9
https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%82%AC%EB%82%9C%EC%88%98

Search

&

Replace

Sure, it was considered impossible

because Vesper wasn’t invented yet.

Vector Embedded, Super-Positioned Plain Text

Coil of Wire

The magnetic field around a
current carrying conductor.

.................

Magnetic Field
Lines

I

Current out Current in

* Vectors in the Vesper universe contain more than just numbers.
* Existing cryptos manipulate plain texts to hide the real values; Vesper doesn’t.

* Vesper algorithm ‘transform’ the plain texts to create vectors that exist in the Vesper grid.
* Plain texts exist with cipher texts simultaneously but in different ‘super-positioned’ space.

Just like the magnetic field exists along the path through where electric currents flows.

* The grid (lattice) coordinate system that Vesper employs efficiently hides the plain text.
* \Vector analysis can reveal the plain texts in the Vesper grid system.

Search, then replace

FE C2 87 AF D8 17 €F 8D 43 C5 2A 0D &8 77
01 B3 B2 38 01 OA FA SA EE C4 AS BA S5 09
2E 85 OA 8D €C A3 7D SD SsS 31
€D 1A SB DO DA Bj 8 77 SB C2 BF EO
A€ E2 1F BC A7 OE AE 76
AB SC 75 03 Fa 1B 43 57 12
SB 7F S5 B2 4E E4 SF C7
42 6F 31 AA 81 SE 18 BB 0D
93 €C BE SF SB 96 S1 Al OC
DB 07 42 57 3A 29 31 6E E1
EC 70 A7 SC 04 g 21 C7 A6
AD S8 D7 32 EE 30 4E 1B
€1 1D 7B 1A €C 07 D1 5S4 EE Al EB BE 33 A4

o 0 WO DOWMAO
OO LUMmDOM OO

* For Vesper, searching cipher text for specific data is not much different than doing so in plain text.
* For vesper’s simple — and fast — calculation, plain text is clearly visible within the Vesper lattice.

* Vesper’s byte search algorithm is different from normal search algorithm.
* |t was designed for a different purpose in 90’s by Si Park. (A new patent will be applied for.)

* Replace is just a simple vector transformation.

* Once the target data is found, recalculating the vector components will translate the vector - replacement.
e ‘Original’ and ‘new’ data must have the same byte-length, of course.

Ir

stantaneous

E

ncrypted Data

Morphing

Cha
Wit

nging Safe Lock Combination

hout Opening the Safe

Key-morphing Overview

I love you! KeyA @
v
Ll [ifofvlel [v[ofull] Ll [ifofvlel [y[ofufl]
ASCII [49]20]6c|6F[76]65]20]79]6F]75]21] Encrypt Key-morphing Decrypt mmmmm) [49]20]6C|6F|76]65[20]79]6F|75]21]

A2 6F 39 00 BE 77 F4 5C 22 E8 8A

Key B h

* Key-morphing converts cipher text ‘A’ to ‘B’ without decryption process.

* No data is saved and/or stored during the key-morphing process.
* No artifact left either on the disk or in the memory.

* Internally, it’s done by vector calculation.
* Simple calculation to move around the vectors that represent cipher text — very fast!

Morphing? Like ‘Mystiqgue’ from X-Men?

P lclu7jufxle]a]s]i]p|a]7]aln]2|F[s]3]s]z|T]s|w]s|v]c]s|1[r]|o]|R]

Key A lFlc|m|7|ulk]e|2|o|c]p|a|7|a|n]2]F|3|3]8]z]T]s|w|s|v]e|8|1]r]o]R]

[Flofu7]ufx|e]a]o]L]p|a]7]aln]2]F[s]3]e]z|T]s|w][s|v]c]8|1[r]o]R]

LFlofe]7|ufx|e]a]s]i]p|a]7]|aln]2]F[s]3]s]z|T]s|w][s|v]c]8|1[r]o]|R]

4 [r[sTel7[s[ie[a]o Tk a[v]s]s u]p2]s[o o e[aTe 4 s [2[x[n]4 6 o]"]
ey B [eToTel7 = [[e[ala [« [a[][5 a7 [2]s[o]o e a]ala s [2[x[n]4 s n]x]
@ [e[e[e[7[s[1[e[s[s[«[alv[:]s[n]e z[so[o]s a6 4o 2 x[n]a6u]s]

Actually, YES!

Morphing occurs ‘byte-by-byte’ within the CPU without storing or saving the intermediate data.

No artifact.

Instantly invalidates ‘old’ key.

It is faster than decrypting and re-encrypting entire data.

It also uses less disk space because the plain text data is NOT generated.

So, how fast is the key-morphing process?

& Vesper Core ‘Spider’ Dema = O *

File Key HEProcess Help
Vesper Cipher Core 'Spider' Technology Demonstration version 1.3rc2 |
Copyright (c) 2818, 281%, 2823 Si Mong Park. All rights reserved

Unauthorized copy and/or distribution of this program and/or any related material(s)
are prohibited, and such action(s) without prior permission will be prosecuted.

Encrypted 'C:\Demo Files‘\Kate Liu - Chopin Piano Concerto in E minor Op. 1l.mp4' (6868741176 bytes)
- Created: C:\Demo Files\Kate Liu - Chopin Pianc Concerto in E minor Op. 11.mp4.168381111.vspr (ID: 1866864842)
- Elapsed time: 3.34 seconds (Avg. rate: 171.43 MB/s)

Key-morphed 'C:\Demo Files\Kate Liu - Chopin Pianc Concerto in E minor Op. 11.mp4.168381111.wvspr' (1281483364 bytes, ID: 18686864842)
- Created: C:\Demo Files\Kate Liu - Chopin Pianc Concerto in E minor Op. 11.mp4.168381111morphed.vspr (ID: 75192135)
- Elapsed time: 7.48 seconds (Avg. rate: 153.27 MB/s)

Decrypted 'C:\Demo Files‘\Kate Liu - Chopin Pianoc Concerto in E minor Op. 1l.mp4.168381111lmorphed.vspr® (1281483364 bytes, ID:75192135)
- Created: C:\Demo Files\Kate Liu - Chopin Pianc Concertoc in E minor Op. 11.75192135.mp4
- Elapsed time: 5.17 seconds (Avg. rate: 118.86 MB/s)

(Time measured with the 572MB data file under desktop PC under Windows 11 Pro with i9-12900KF CPU.)

* Key-morphing is about 10% slower than normal encryption but is still faster than decryption.
* Encryption =171.43 MB/sec.
* Decryption =110.86 MB/sec.
* Key-morphing = 153.27 MB/sec. (= 9 — 12% slower than normal encryption)

* Still faster than normal process of decrypting and re-encrypting.
* Encryption time + decryption time = 8.51 seconds > 7.48 seconds = key-morphing time

How can morphing be ... useful?

_l__ Morph Processor ”

6\ . ey

@ [r[a]o]2]s]n][7]e]z[«]o]r[a]s]s]¢ u]s]s]e[e]o]2 s [a[x]r]s]7[2]u]e]

i v

Encrypt & Send

Data Storage

Morph & Store

Data Communication Gate

* The most powerful use will be the handling data at the lower communication channel.

* As the data pass the communication port, Vesper can morph the data into the new cipher text as they
come through.

* The original cipher text will NOT be stored anywhere in the receiving system.
* Invalidates the original ‘user’ key

* The ‘user’ key becomes a temporary ‘one-time-use’ key.

* The key in the receiver will be stored locally — easy and safe key management.

Vesper’s Overall Communication Flow: User’s View

* Works just like a normal asymmetric key system

* Both ‘1-time-use-only’ keys are issued by the server(s)

Alice

1. Request Key

& >
P rd
~
2. Publish Key
Key (A)
Plain Text Key (A)
3-1. Encrypt
I I 3-2. Destroy Key
4. Transmit
~
7

Cipher Text

Alice and Bob use different keys

Cloud / Server

Lt et

¥
¥
¥
¥
¥
¥
¥
¥
¥

ufnt,nt s,

"
1
"

L R R L R L e O L S L S LT L

"
1
"

ufnt,nt s,

"
1
"

L R R L R L e O L S L S LT L

"
1
"

e e e e

mu

"
1
-.-.-.-.-.-.-.-.-.-.-.':-.-.-.-.-.-.-.-'.-'.-'.-'.-'.-'.-'.-'.-'-'-'-'-'-'-'-'-'-'-'-'-'-

P L e L L L e

"
1
-.-.-.-.-.-.-.-.-.':-.-.-.-.-.-.-'.-'.-'.-'.-'.-'.-'.-'-'-'-'-'-'-'-'-'-'-'-

mu

"
1
"

P L e L L L e

"
1
"

T T T T T T T

e
O T T oy Ly Ly L e T L oy Ly Ly Ly Ly e T D Oy Ly Y LY Ly

T N T T e e e N T T N N T T T e N T N e T T T T T T LT LT LT L T T

-l.-l.-l.-l.':l.-l.':l.-l.-l.-l.-l.-'.-'.-'..-'.-'.I'-I'-I'-I'-I

5. Notify (You’ve got mail!)

Bob
~
< - @
~
6. Request key
>
7
7. Publish Key
P Y
Key (B)
8. Request Package
< A £ Key (B)
>
9. Deliver Package I
A | |
— Cipher Text
10-1. Decrypt
Plain Text 10-2. Destroy Key

Keys are always generated upon request and have time limit (expiration), and no two keys are the same.
Publishing keys require the separate account/user validation process (which is NOT shown above).

Overall Server-side Internal Process

Server

Alice

1. Request Key

N

2. Publish Key

Key (A)
Key (A)

CT(A)

1-1. Request received
1-2. Generate user Key (A)

1-3. Save a copy of Key (A)
in Key-server

1-4. Transmit Key (A) to user

= P

Key (S)

4-1. Retrieve stored Key (A)

4. Transmit from Key-server

Cipher Text (A), CT (A)

4-2. Generate server Key (S) @

4-3. Key-morph incoming Cipher
Text (A) ‘Byte-by-byte’ to CT (S)

4-4. Store CT (S) in Data-server

6-1. Request received
@ 6-2. Generate user Key (B)

6-3. Save a copy of Key (B)

in Key-server

6-4. Transmit Key (B) to user

CT(S)

= @

Key (B)

CT (B)

8-1. Request received
8-2. Retrieve CT (S) from

Data-server

8-3. Retrieve Key (B) from

Key-server

8-4. Key-morph CT (S) to CT(B)
8-5. Transmit CT (B) to user

Server’s internal data, ‘Key (S)’ and the cipher text ‘CT (S)’, never leaves the server.

Upon Key-morph, cipher text NEVER gets decrypted.

5. Notify (You’ve got mail!)

~
_ d
~
6. Request Key
N
rdd
7. Publish Key
Key (B)
P 8. Request Package
~
N~
rdd

9. Deliver Package

Cipher Text (B), CT (B)

Key-morph occurs byte-by-byte with no artifact. Even incoming and outgoing cipher texts (CT (A) and CT (B)) are NEVER saved in the server.
External keys (Key(A) and Key(B)) are ‘one-time-use-only’ and will not be accepted by server ever again.

Maximum security is guaranteed.
Upon detecting any unusual activity, the entire data in the server will be Key-morphed instantly, invalidating ‘all’ keys existed before Key-morphing.
Any user (including internal personnel) logs off, all data accessed/used by that user account will be automatically Key-morphed.

Key-servers are physically separated into multiple servers, and each key will be randomly masked and stored separately to prevent attack, intrusion, and/or leak.

Bob

S

16-bit vs. 32-bit Cipher Text

* Modulo operation is used to keep the value within a certain size, such as 16-bit or 32-bit.
* Congruent modulo (a.k.a. remainder, mod, ‘%’ operation) is always used to prevent values go over the limit.

* It ‘wraps’ around the value: it defines the ‘ring’ set: Z/nZ={0,1, .., n-1}
For example, 2/52={0,1,2,3,4 }: 13 (mod 5) =3, 14 (mod 5) =4, 15 (mod 5) =0, ...

 What is the meaning of comparing 16-bit cipher text and 32-bit cipher text?

» Larger the size of the unit data, broader/wider range of data can be represented. Thus, if a simple ‘guessing’ the plain
text based on cipher text, then, yes, 32-bit will lead to make more wrong guesses.

« Why 128-bit RSA complexity is said to be (at most) 21?8 when guessing one 32-bit value already costs 232? It is because
that it is better to figure out the ‘key’ then guessing data (cipher text).

Simple guessing is a ‘probability’: To guess 1 out of 32-bit value may take 232 guesses. It will take up to 2329 guesses to find out ten 32-bit values.

* Cryptanalysis is either (1) to crack the key or (2) to find a correlation between known data to closely approximate the next
one so that it will make ‘logical’ consequent guess and eventually will figure out all cipher texts.

* If we don’t do ‘brute-force’ to solve the key, the next best thing for the cryptanalysis is finding out the
pattern (correlation) among cipher text data.

Making It Vague

* Which one is easier to find out the pattern?

Lofofafcfoofefefojofofc]ofo]o] lo]ofa]ofofofofeofo]o]ofc]ofo]o]o]plofojofo€]ofofofo]F[o]o]o]o]

 When data are present in a larger and more sparse space, the pattern stands out more obviously.
* If possible, it is better to use the denser structure for ambiguity and vagueness.

* Smaller data footprint means less memory used, and it also leads to the faster computation.
* Calculation speeds between integers, floating points, and double precision floating points are dramatically different.
* Memory IO (read/write from/to memory) for larger sized data is also take longer than smaller sized data.
* Encryption/decryption requires billions and billions of calculations and 10: accumulates into a big performance difference.

* Prototype Vesper uses 16-bit data type for cipher text. It does not mean that 32-bit cannot be used;
it is just that 16-bit is sufficient for the algorithm while it makes cryptanalysis/attacking harder.

* Therefore, simply comparing 16-bit and 32-bit cipher texts does not have much value. Each cipher
can choose whatever more suitable type for its purpose.

s lim (10)™ enough?

n—>00

Components for Vesper

* For each vector axis:
* Vesper can use ANY NUMBER of ‘axis coefficients’ for each axis. (Minimum of 2, no limit on maximum)

* The multiple of those numbers determines the length of that axis.

* For example, if 5 and 12 are used for coefficients of an axis, then the length of the axis is 60 (=5 x 12).

* One of the coefficients may NOT be a prime and can even be an EVEN NUMBER. = This is a game changer!

* Most, if not ALL, legacy RSA-based ciphers use two prime numbers.

e Finding out one prime factor takes hundreds of years (and getting shorter); When one is found, the other is also found.
* Vesper uses prime number(s) and a non-prime natural number. So, finding one prime does not guarantee anything due to the combinatorial problem.

* E.g., let’ssay that 7 and 15 are used for two axis coefficients, and an attacker somehow finds out the size of the axis is 105. Since 105 can be factorized into 3 x 5 x 7, there are
three possible combinations to figure out coefficients: (3 and 5), (3 and 7), and (5 and 7).

* As coefficients get bigger and/or more than two coefficients are used, the number of possible combinations uncontrollably explodes. (Look for ‘Little Omega Prime Function’)

* Vesper uses the ‘lattice/grid’ consist of at least two axes.

* Based on the prototype Vesper setup, the size of the ‘unit lattice’ is:

« Between 10° and 10*° using two axes with two coefficients (up to 1.263738E+16)
+ Between 102 and 1023 using three axes with two coefficients (up to 1.4206458E+24)

» Vesper is a configurable cipher by design. Coefficients and dimensional axes can be added for more complexity.

* These values are just for the lattice setup without actual vector! (On to the next page, please.)

Moving Vectors in Vesper

* Vesper uses vectors with random movements in the base grid/lattice.

Prototype employs at least 40-byte worth of random factors/coefficients to determine the movement of each vector.
Complexity is about 2.135987E+96.

* There is NO possibility for any two vectors to use same movement pattern in Vesper algorithm.

Vesper uses well-known algorithm to make sure that no two vectors share the same pattern.

* Vesper does not use any ECB (electronic code book, a.k.a. lookup table).

Along with the use of non-prime factor for the axis coefficient, no known attacking methods (including clear-text and chosen-cipher text) for RSA cipher
will work.

The brute-force attack method may work only for a single key. Vesper can have at least 28192 possible variations for keys.

* Vesper is a ‘byte’ based cipher — not a block cipher. Thus, a formula for a single vector may not necessarily work for the

next.

* Prototype (with the minimum setup) Vesper formula itself has average complexity of 2.6992E+112.

AES-256 is about 1.15792E+77.

This does NOT include the complexity added by applying pseudo-random numbers (like Vigenére cipher) as well as the
combinations of axes coefficients from prime factorization of each axis.

Just from the implementation of the prototype Vesper, its complexity far exceeds that of RSA and AES-256.
Prototype Vesper uses two axes lattice with each axis employs two coefficients.

- wi
~._“ X ‘.« '

" Truth about Secu rity

e
o |
v
g

Security Features of Vesper

* Vesper uses 1024-byte key, which is 8192-bit key system.
* Itis larger than AES-256: about 27236 times larger.

* Brute-force key attack against Vesper is, as a matter of fact, hopeless.
e It will take 7 x 1025 years for the Bitcoin network (yeah, THAT network) to crack the AES-128 key.
It will take 2.29 x 1032 years for the largest quantum computer (as of 2020 with 65 gubits) to crack the AES-256 key.

Vesper is designed to be configurable.
* Axis coefficients with the use of even number increases the level of security by introducing a combinatorial problem.

* Making multi-dimensional (axes) lattice makes axis coefficient combination problem even harder to solve.
* Number of axes coefficients and dimensional depth can be added and/or subtracted based on customer’s needs/requirements.

* Vesper uses vectors moving on the lattice/grid.
* The movement formula includes many coefficients/variable that are randomly calculated based on key.

* Vector formula for the prototype Vesper already has the complexity of 10%°, and it does not include other complexities
mentioned above.

On top of all, Vesper uses internal scramble algorithm to further enhance the security.
* The anti-temper for the key is already used; the anti-temper for the data will be added near future.
* Pseudo-random XOR mechanism, like Vigenere cipher, is also used.

Conclusion: The cryptanalysis/attack against Vesper is near impossible.

https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/
https://www.ubiqsecurity.com/128bit-or-256bit-encryption-which-to-use/

See them for yourself

* No trace of ECB (Electronic Code Book)

* Strong scrambling: combinatory (random + Vigenere) masking

' (If you still can see a penguin or the flag, you really need to see your doctor, seriously.)

Cryptanalysis: Dimensional Coefficients

* Vesper Lattice: the most enigmatic feature

* Vesper lattice can have any dimension more than 2. (vesper can have, say, 20 dimension. Well, theoretically.)

* Each dimension can have any number of dimension coefficients.
* E.g., for 2 dimension, each axis (x and y) has different dimensional coefficients.
* The multiplication of all dimensional coefficients for a single axis determines the size of that axis.
* Dimensional coefficients must be relative primes, and one can be an even number.

Totally different from RSA’s two co-primes that is governed and proved to be volatile from Shor’s algorithm for quantum computing.

* Finding out the dimensional coefficients for all axes is crucial key to attack Vesper. However,

* The solution is harder than ‘subset sum’ problem, which is NP-hard.
* The first step is to determine the length of the axis. Then, finding out all dimensional coefficients is, well, amazingly time-
consuming.

E.g.: If the length is 770, the divisors are 2, 5, 7, and 11. If attacker finds out there are three dimensional coefficients, the possible combinations are:
(2, 385), (5, 154), (7, 110), (11, 70), (10, 77), (14, 55), (22, 35) = Try for actual numbers like 1,001,417,796,266.

Cryptanalysis: Random Number Masking

Vesper utilizes two step masking process.

* 15t Step: Random number masking
For demo, there are more than 10 key numbers + same number of random number masks
This is to scramble and to obfuscate the original data (plain text).

e 2ndStep: Vigenére masking
Vigenere encryption algorithm is proven to be ‘impossible’ to solve mathematically.

This step is to prevent and incapacitate frequency analysis against Vesper cipher text.

There is no known ‘logical’ method to find out the random numbers.

Vesper is NOT an RSA-based algorithm and is NOT covered by Shor’s algorithm.

* The only way to attack Vesper is the brute-force attack.

UPDATE: Vesper encryption key is now (from version 1.3) 1024-byte (1MB) and provide:
* Various license types and expiration date
* Key-morphing validity checking
* Origin check
* Transfer of ownership
* Secure key-validation (SHA-256)
* and more!

Vesper

VS.

Homomorphic
Encryption

Are they like apples and oranges?

Why does HE appear bigger than what it is?

|deal vs. Reality

* Difference between ‘academia’ and ‘real-world’

* ‘Infinity’ does not exist in the real-world: ALL numbers must be represented in the given data size (16-bit, 32-bit, etc.).
* Larger subset of the real numbers (floating-point numbers) cannot be represented in computers, by design.
* le.0.1isstored as 0.100000001490116119384765625 in 32-bit (IEEE-754).

* In other words, the fact that representing numbers in the computer’ itself introduces some errors already.

 Homomorphic Encryption (HE) intentionally injects ‘errors’, called ‘noise’, to enhance the security against cryptanalysis.
* How can we decide that how much ‘noise’ is enough? Are there certain criteria for these ‘noise’ to satisfy requirements for ALL cases?

* Under HE, the noise accumulates over time, and, thus, HE performs a procedure called ‘bootstrap’ to keep noise down.

* Extra process requires additional resources (i.e., memory and time) in real-world.

* Manipulation of data (e.g., multiplying some factors, bootstrapping, etc.) to reduce the errors may look simple in theory on a paper, but each process
requires additional resources for computers to store, to read, to write, and to calculate data. Moreover, as data gets larger, more resources are needed.

e Assurance against cryptanalysis: What happens when an attacker introduces larger errors to the data?
* How can HE find the abnormal level of errors in the encrypted data? Can bootstrapping resolve the error and keep the error under control?

* If HE detects any irregularity of the data, how does HE know if the error is intentional by customers or abnormal by attacker?

* Homomorphic encryption is a great field for further research and study.

* However, it does not necessarily mean that it is the most suitable for the applications, at least for the world as of today.
* The real-world applications must consider the performance, resources, and maintainability/sustainability.

In Reality: Why is Vesper for the real-world?

Performance: Vesper is super fast!

* Testing shows that the prototype (without any performance optimization) encrypts at 160+ MB/sec and decrypts at 100+ MB/sec.
Tests were performed on the machine with Intel® i9-12900KF @ 3.19GHz, normal priority under Windows 11.
The speed is fast enough to encrypt/decrypt 4K HD movies in real-time even without any optimization.

No injected error or additional manipulations
* The calculation results are based on the exact data as they are provided without any hidden errors or adjustments.
* |tis user to decide what to accept and how to interpret the result — not for computers or algorithms to do human’s work.

Ability to calculate and evaluate the encrypted data in cipher text form
* Not only addition and multiplication, but Vesper can also perform validation (>, >=, =, <=, <) without decryption of data.

Ability to search/match for the data in cipher text form
* Text search and data matching can be done without decryption of data.

Small size for the cipher text

* Basic configuration only ‘doubles’ (x2) the size after encryption.

Using minimum numbers for the axes and dimension configuration.
The size will increase as the number of dimensions and dimension factors increase.

* Additional dimensions and axes coefficients will increase the size; however, it is fixed amount and is still much smaller than HE.

Anonymity? Needs More Than Cipher Algorithm

» Keeping the personal information safe is NOT a job for the cipher algorithms entirely.

* Data need to be carefully structured and organized, and the database also needs to be carefully designed.
* Encrypt personal data into a file with the strongest known cipher then naming it with its owner’s name does not keep the anonymity under cover.

* The most important thing for the anonymity is how to structure/manage the data — not which cipher algorithm to use.
* ‘Encrypting name and not encrypting his/her DNA data’ is the same as ‘not encrypting name and encrypting DNA data.’

* The servers and their architecture must be designed and setup to keep the information safe.
* Without a gun, the bullet is just a piece of metal, no matter how great the bullet is.

* Cipher algorithm must provide certain features to keep servers secure and efficient while fast for service.
* Vesperis the only solution for the information security: for data itself AND for the ironclad server design.
* Key-morphing feature of Vesper satisfies:
Total isolation of internal data
Limiting the keys to be valid only for the external data
Instantly invalidating leaked keys
Hiding the matching keys from data
* Cipher text searching capability of Vesper enables servers to keep data and key indexes always encrypted.
Intruders cannot do anything as the information is encrypted and useless without correct key.
Even if hacker steals the data, server can perform key-morphing to change the key and data instantly.

* All those capabilities need to be performed by servers but not by the cipher algorithm. It is a management matter.

Performance

Average Performance Summary

* Encryption: 160-—170 MB/sec.

e Decryption: 100-110 MB/sec.

e Key-morphing: 140 — 150 MB/sec.

* Simple search: 2,000,000 fields/sec.

 RDBMS query: 3,000,000 fields/sec. for 7 queries

* Result recording and calculation are done by Vesper core library.
 RDMBS configuration file parsing and Vesper component configuration are performed by the demo program.

* NOTE:

* Test result may vary based on the system configuration.
* Tests were performed on the machine with Intel® i9-12900KF @ 3.19GHz, normal priority under Windows 11 Pro 64-bit.

Vesper RDBMS Demo & Performance

Analysis results for 24 rules for 100,000 people (6 fields per person)

B Cord Holder Dataxt - Notepad - o x| | B Config- Card Holder 10000.txt - Notepad - 0 X ~* Vesper RDEMS Demo = O X
|
File Edit View @ | Fle Edit View @« Eile Tools Help
=HI Ol 891016-2737344 010-5386-3971 6606157852837431 ASSWA| OHET AHE 4-8 728 1108 | edl, char, @, 18 . .
288 O 750910-2475648 016-3437-9098 1243743722483431 RIMBEA| HT UEE 63-15 1388 3095 TN char, 11, 1 Encrypted RDBMS Technology Demonstration version 1.3a
gEF ©f 970818-2410112 P10-5095-5060 2661501404144432 MEFEA LET TU2E 57-78 | @FUHMS, char, 13, 14 Using Vesper Cipher Core 'Spider' version 1.3rc2
oz 0] 928623-2197128 018-7229-1128 7615528799684423 MBJEA| YHT L UTE 66-73 1705 784 | e e 5 5 5
olga 0] 888218-2393728 @18-4468-1272 6809535344398302 MBREA| F7 YHE 6537 a0F s = @ﬁilﬂ%' char, 28, 13 Copyright (c) 2€18, 2019, 2023 5i Mong Park. All rights reserved
k] & 601006-1327680 916-3688-4440 4291036450771894 AMBHEA SEET SLHE 99-51 1335 18142 @7t=H=, char, 42, 16
ﬂﬁg 0{731291-2352486 019-2078-2517 B666547524192566 sﬁ:ﬂ:k} o7 2EUE 73-M 2468 12002 T4, char, 59, 50 Unauthorized copy and/or distribution of this program and/or any related material(s)
delz o 480613-1737280 010-8311-4210 1665584570418197 CHHPHA| 3 2/ E 50-93 458 152 A : : . P .
| zua O §11217-1720895 91028572180 2563229403927200 FTTUA| HP HEE 25.18 M9 - 2an) 4o are prohibited, and such action(s) without prior permission will be prosecuted.
| uEa 0f 989529-2131648 @18-4121-5758 4988487428456102 HFIAA MF REE 36.78 1855 35138 Ao O\'@i{) et
2P i 559329-1695208 818-4984-3862 1899892623124922 MEHEA| BT KHY2E 56-25 A _ olas e - = Loaded Vesper RDBMS configuration file: C:\Demo Files\Card Holder Data Config File.txt
I ol Of 44p602-272089% 910-1665-6791 9198508973973267 CHPBA| M HE 75-38 1645 35183 2kl = }6 J 5,
| Ol 050616-2672320 #10-1071-2768 5465514603767427 MBREA| MI7 UEEE 9349 S8 = 0lFES, 59, . .
0] 771830-2393280 910-4248-8353 9588889394525052 A2 S WA UHT MUeS 11-16 e - B, 4%, = Loaded the key from Vesper-encrypted file: C:\Demo Files\Card Holder Data.txt.29982158.vspr
d 890919-1262208 010-9169-3656 3079305081525032 A @S EAl TYT HRsE 82-31 2488 40155 Pl o dm -
 981118-1983104 010-8849.9388 8128249614095662 FTUAL MT FSE 2-31 | am ° Her = Analysis
£t 998768-1671808 @18-2518-1238 3454333984150416 A SSEA| SHF AZ18 48-82 2278 5208 e =2 et
0] 559307-2655424 @18-4552-6798 6802270535322038 HBHEA| TP S4hE 5779 4% - Aok, H9, -
i 700420-1983104 010-4464-9911 9504646681588126 HETEL LHT AA6S 71-41 | Y- s, HY, - E2E = =0 Total matched (& =-0l) data = 55
| Of 550702-2033952 018-9231-6951 4650579658462482 SAFHA| UMT TIATF 5-7 170F 26143 A% - gy, 4y, - 2E = O|EH: Total matched (CI'HT) data = 32
| & 550803-1983552 @10-5827-7487 1688295800008486 S AL IR ME 73-58 AdDH Ol&=7|: 0|7
i 700405-1016960 910-6153-2276 4003762211367664 MBHEA 27 LS 7.2 1165 30022 YR, M e - =22 = Qs Total matched (CI=-1) data = 25
= 010924-1197184 010-8973-2880 7144932749600551 CA7FHA| 27 HEHE 1-60 1825 24125 ;IK}’ et a - =3 = 0lFEA: Total matched (OlF44) data = 33
o 508409-1212992 @10-3531-3429 1527283553218130 ABSEA 57 238 56-48 5 A LoD s Total matched (ZE|41) data = 36
O] 611107-2852544 916-9981-4191 3688938668518208 A ZHEL AT MYE 44-19 1995 8175 A DH =|CH=t =|CH=+
0] §31105-2393792 018-6498-4295 9738868276789383 HFAAL| MF YE 99.75 7996846196808697 AF2 A, FIEHES | "7996846196808697", R, ALL - 2= = = Total matched (ZILHEH) data = 18
0f 478509-2983164 §18-3510-7729 6135387397117563 MSHEA HHT HE1E 8235 12345 AF2AE, FIEHE, 123457, R, HY - EE = 0lEg: Total matched (CIEF) data = 38
0 650829-2655936 @10-9761-7902 5528849920567837 HEBHEA MUET L7HEhE 59-79 = R S Total matched (?:}E}—g) data = 39
Of 049723-2458816 @18-1256-6275 2567337941754774 SIMTA| F7 FEE 28-56 245 T ESTES MR . oo E2n, CEySTEND P e o
= 721002-1475136 010-6575-4452 4222258113792925 M@ SWA| UM K18 9-25 ff}ll o TP =0 oD ;:' _fff;” - ee = '—|:-—"—' : Total matched (l—‘_‘-'—"—') data = 4
Of 6108252475648 016-5043-7599 1999821227861765 LTV EA| TMT FRE 25-22 1055 9093 SAAF 018, 82, "0, AD, F&, "SAFDA -E2E = B Total matched (EF71) data = 4
Of 869109-2213056 010-1285-2322 7695350768906040 MSREL FHT SLhE 75-13 85 7123 - =X Total matched (=) data = 49959
= Seas39-1898@ER B18-5155-2324 6236920393785508 A|SSEA| H=T FHE 41-16 805 12128 MEHF, T4, ~MHMESEA~ of X 1 hed (O4) d
el 0] 688711-2147968 @18-5980-6455 4548447643431349 BAILTA| 53 HOE 76-7 HAAZE EA HADIGIA - Total matched (™) data = 58841
He3d Of 4491302803328 010-5825-6433 8728014879289504 BAIFAL| WT US 86-55 75 38092 HaAE =4 CpRaeEAl- - 7996846196808697 AFEAF: Total matched (7996846196808697) data = 1
daid O TR E G b T EL P Tar s e el e s HAHZ Z ~olHFUA [ZYEHZ| : O : 918527-2655936 : P16-5286-1936 : 7996846196898697 : AMEE'EA| T T S T[aS 74-35 2845 31125
ol g 551227-1410112 910-1683-5545 9133825514604200 RIHBEA| M7 YEE 59-98 608 419% oo, T, "TEEEN 12345 AFE X Total tched (12345) data - 12
oot Of 789916-2344128 016-6205-8663 4300090133222492 MB R A YHT M F3E 8746 BEAZF, Fh, FRYAA" a - Jrealr Total matche () data = P - = o -
ey 0] 821812-2131584 @18-3747-6688 BA38R48826356297 RAMFAA HETF TAE 96-3 EAFE, =4, "HEYDA [‘13"3}?:1 » D.JEEL .7:=°|‘Lf, ?:P(HE, Z=| R A s ?:l-rr—v—, ?:ltlgl, g4 s D|%E, .7:5:31—, 274|E, A %C‘ﬂ]
olsio| L See3a7-1066112 619-3189-3788 7528467414003051 CHM A MF THE 67-a SAHT, T, ~2AT A - EUAFE F: Total matched (= + SUESAl) data - 1893
[SRt a5 MELE = ’ 2 = - *
A3 e sk nb acion BaSA0 80 SR se R e || aeas ot g agnie - S&7F O1: Total matched (01 + SITHAI) data - 1789
Vo Rk Wodow i et - MEAST Total matched (AMEE'EAl) data = 51686
: [=m] a %@ 1 Windows (CRLF) UTF-16 LE - F4bH 3= Total matched (FotESAl) data = 11849
=8 - CH*23=: Total matched (CHTZ=Al) data = 8363
F—— et b B0 8 %
100,000 People Data e e © vt e © e Simple - RIS Total matched (SI™ZHA|) data = 7569
[v e | - HEAMET Total matched (EFEHSAl) data = 7727

S WA WA WA
™ WA A

(generated) Configuration CHRE7Z=: Total matched (CHETSIAl) data - 7288
E+r7EF: Total matched (S HESAl) data = 3682

MEZS=: Total matched (MIEELEX*IAl) data = 1836

- Total analysis time: 8.683813 seconds for 688888 data (average rate = 877432.87 data/s)

+

v Vv |
e 3 = Analysis
— = | - 7996846196808697 AFEXAF: Total matched (7996846196888697) data = 1

B | [ZEH2] : & : 918527-2655936 : 016-5286-1936 : 7996846196808697 : MESE Al HTT SJH4S 74-35 2045 3112=] |

Encrypted

Lopes Pk]2 S P
it

- Total analysis time: 8.297917 seconds for 688086 data (average rate = 20813983.76 data/s)

L i) Ve P Yok 1 =
Doy 1 Bt g Lol Pant
Ve Lomr hicz:) il
kg St
Logpos P Sz icm) e e

e e Gk Gae T
ML 3 By B o Firs

Vg e o v e

S 447152 D A e

Analysis result for 1 rule for 100,000 people (6 fields per person)

Performance Shootout

Wesper RDBMS Demao | Fle Edit View & File Edit View)

Configuration File 100 People Health Data (generated)

B Health Data 100 Config.txt - Notepad = o X = Health Data 100.6xt - Notepad - o £

File Tools Hel Zalg O 50 209 97.0 100 84 11.1 018-3756-9942 ASSEA| GEET 0§2/5 90-70 1255 714
—= HEP @d%, char, o, 10 | =% e 41 168 66.5 105 92 6.4 £16-2338-1520 YFBHA| 7 FHE 53-79 1965 24043
@M%, char, 11, 1 | gxe 0] 55 184 74.4 107 95 9.5 010-2343-8545 MESEA| 287 SAE 31-63
Encrypted RDBMS Technology Demonstration version 1.3a @L‘;O" i : 13’ 7 Z|H8) Y 53154 70.3 153 77 7.4 018-7696-2392 BAMFAA| ZMHT HES 10-75
Using Vesper Cipher Core 'Spider' version 1.3rc2 @AIQJ TE i B m “:i‘ﬂ E.: 32 166 63.8 108 98 5.4 910-9706-4681 ﬁ%%f/\} Qi ’;‘51% 24-75 2695 2608
. . . s , g | dE= Y22 198 109.5 142 81 4.7 010-2983-5676 MESEA| W AEsE 77-12
Copyright (c) 2018, 2019, 2623 Si Mong Park. All rights reserved @x||§; float, 20, 5 Uz 30 150 50.1 102 79 7.3 010-3685-6238 MESSEA| TET FE3E 11-98 1085 30173
. L . . @=S7I8Y, int, 26, 3 EE O 59 197 92.8 86 98 10.1 010-7354-1858 ASSEAl LT IS 47-44
Unauthorized copy and/or distribution of this program and/or any related material(s) @OIATIES, int, 30, 2 UEz Y65 168 61.4 8560 7.0 010-2975-8031 ASSEA| Tt OIHE ce-90 2875 17112
are prohibited, and such action(s) without prior permission will be prosecuted. @BAIZt, float, 33, 4 | ool 50 197 89.2 108 55 7.8 910-4898-6787 RAMTAA| 57 $HE 26-26
MBS | char, 38, 13 d=g Cf 36 178 86.9 131 95 10.5 010-2459-3469 MS5LA| 2H JHAE 46-23
_ . . ST . s s FA, char, 52, 50 ool H 56 169 83.6 97 90 4.5 ple-3743-4042 MSSEA SHT 28E 79-65 175 9162
= Loaded Vesper RDBMS configuration file: C:%Demo Files\Health Data 186 Config.txt By [anx 63 192 1.7 128 66 6.1 010.2656.9262 MES WAl ZHT 4235 55.30
M - sE0], AT, ~SF0", R, ALL 2 Ol 61 179 64.3 78 55 9.1 010-4528-8994 LfF Al M HEIS 16-43 465 12162
= Loaded the key from Vesper-encrypted file: C:\Demo Files‘Health Data 1©@@.txt.34668548.vspr mwor ’L}o| “a :' s | Hee Cf 29 172 74.8 128 73 11.2 B10-7920-4998 MEEEA| $T7 232E 70-25
":HW@, A\Q, ! | a7t 22 187 101.1 137 74 7.7 010-9526-1900 LFICA| LT ZEHE 66-20 225 20155
= Analysis ;KL 0 ;x’ i Y58 0f 23 154 57.1 98 59 7.6 018-2363-9799 MESSEA G857 =15 94-2 2655 4022
j}z:)\11;’ 2, ¥ | =25 e 39 201 95.4 8@ 89 8.3 910-2086-2687 MSSEA| M7 B S 8e-57 2485 3301=
_ _ 17e-1%08, H%, 1, Y, >=, 178, <=, 190 o|=at O] 65 165 68.8 82 57 7.4 010-6392-1123 M2SEA| =7 HE45 25-34 745 416%
| - gncj_ = THHEIOL: Total matched (EAIOI) data = 1 nEy, =EIEY, 1, v, >-, 140, R, HY ot o 42 175 66.6 102 51 11.2 010-4950-1364 SAFREA| S WO{S 15-39 2605 28132
[EHHIO] : & : 43 : 184 : 182.4 : 84 : 82 : 18.9 : @l1e-5eee-2548 : MEEZEA =57 E25 12-37] HEY, «Z7[EY, 1, ¥, <=, 98, R, 4F oo O] 44 185 92.9 143 98 5.5 010-2629-3675 ME8SEA| ZMT EHE 2.9
- THILEOl (int): Total data = 1@@, Average = 42.1, Min. = 28, Max. = 69, Std. Dev = 12.9 SEHEE, SBAZH 1, ¥, <=, 6, R, 4T ’:.‘j-ﬁ‘ﬂ ::.:38 189 86.7 8183 7.3 010-9796-3135 M§—§§M :Zﬁl g@,si 82-13 msi 1195
| - ®AMAIE (int): Total data = 108, Average = 179.8, Min. = 158, Max. = 289, Std. Dev = 17.3 bk e T e o Qo Do o 1ee mee
| = s =5 a - 8- - 2EES = Cie) - =l
| - HF (float): Total data = 188, Average = 86.16, Min. = 44.28, Max. = 124.2@, Std. Dev = 19.12 1 Col1 100 Windows (CRLF UTF-16LE e O az 172 70 & 197 50 & & 1020102700 MEE Al TG AIAME. 204 16eE 2208S

- &lEF 17e-19@ (int): Total data = 34, Average = 179.9, Min. = 171, Max. = 198, Std. Dev = 7.1

| - ES (int): Total data = 268, Average = 146.4, Min. = 141, Max. = 153, Std. Dev = 3.9 | asco 00 ws (CRLF UTF15LE
| [H&sH, dE=, olot"E, B9, F 2, HEs, a4, dH, et olEA, o8y, BSH, =2elX|, =40o), Hers], S, WMOrE, g3, =Hes7), dB7I) - -
- HMEY (Jn): Total data = 27, Average = 82.3, Min. = 76, Max. = 89, Std. Dev = 3.8
[Z=US, ZE=, g, =484, 0lE=;, ?:I%‘”.‘_' HHE X, &L, o|xd, S5, HLE, =8d, M=, 2S=, 24T, oloE, o/EY, ZTE, ZME, ¢4, a0, gas, =H=, LTS, THH 0|, SFERE, H5HLEE|]
- FEHES Float : Total data = 16, Average - 5.8, Min. = 4.8, Max. = 6.8, Std. Dev = 8.6
g
[e= HEZ=, O|LIH, OIOHE, O|LIX|, AHAX, HEE, UE=, O|0|FH, U=, IR, WMOPH, 9=, TF 5], O|Td, QrETH

Total analysis time: ©.814365 seconds for 1888 data (average rate = 69613.64 data/s)

* Test used data of 100 people’s health data, and each person’s record contains 10 fields: name, sex,
age, height, weight, systolic/diastolic blood pressure, sleep hours, phone number, and address.
* All data are encrypted with Vesper 1.3rc2 — no data is stored decrypted.
* No plaintext data preprocessing is applied; characters and numbers are mixed as shown above screen shot.

* 8rules total: 7 rules to calculate average and standard deviation along with maximum and minimum value records.

e Result: 0.014365 seconds (= 69,613.64 data per second)

Push the Limit with 1,000,000 People Health Data

é;;\’esper Core 'Spider’ Demo - O x] Hea\thD‘ata(;nﬁgnt-Nntepad = [m] x I)
. .
File Key HEP Hel
fie sy b » * Performed analysis with 1,000,000 people’s
Vesper Cipher Core 'Spider' Technology Demonstration version 1.3rc2 | |
@4%, cher, 6, 10 h Ith d t t d
Copyright (c) 2e18, 2819, 2823 5i Mong Park. All rights reserved | @de, char, 11, 1 ea a a genera e .
Ltol, int, 13, 2
Unautherized copy and/or distribution of this program and/or any related material(s) SA'Q} ;:t: 16: 3 | .
are prohibited, and such action(s) without prior permission will be prosecuted. @ﬁ%‘;j flo;t, ZE: 5 H [] 10 flelds for each person
7| :
= Encrypted 'C:\Demo Files\Health Data 1@6@@e.txt' (20800002 bytes) ga;;:f:ﬂ:: ?”'tf’ g:: ; |
- Created: C:\Demo Files\Health Data 188866.txt.B82253558.vspr (ID: 1933252215) USRS, 506 i | ° | f d f |d
- Elapsed time: 8.12 seconds (Avg. rate: 167.57 MB/s) @r AL, float, 33, 4 | TOta O 10,000,000 ata Ie S
@H=H=, char, 38, 13 |
= Encrypted 'C:\Demo Files‘Health Data 1eee@ee.txt' (28860802 bytes) @F 4, char, 52, 58 | . . .
- Created: C:\Demo Files\Health Data 1806060.txt.148594238.vspr (ID: 1322381619) o e Data flle Slze (encrypted) = 396MVB (Wlth key)
- Elapsed time: 1.16 seconds (Avg. rate: 171.88 MB/s) HALIO], Lo, 1, v
| HHAE, AE, 1, ¥ |
S HE, HE, 2, ¥ ' .
Time for Encryption 4 170200, 1, 1, ¥, 5=, 170, <-, 190 * Performance measured:
aEHd, +HIIEY, 1, v, >=, 140
HEe, =BT\, 1, v, <=, 90 .

[Vesper RDBMS oo TR SR G e | * Encryption: 1.16 seconds

Configuration File | e Analysis: 3.288853 seconds

|
File Tools Help

Encrypted RDBMS Technology Demonstration version 1.3a
Using Vesper Cipher Core 'Spider' version 1.3rc2

Copyright (c) 2e18, 2819, 2823 5i Mong Park. All rights reserved ¢ TOtal: 4-448853 Seconds

Unauthorized copy and/or distribution of this program and/or any related material(s) Y o .
are prohibited, and such action(s) without prior permission will be prosecuted. ¢ TeSt System SpeC|flcat|0n
= Loaded Vesper RDBMS configuration file: C:\Demo Files\Health Data Config.txt ° |nte| |9_12900KF @ 319GHZ

= Loaded the key from Vesper-encrypted file: C:\Demo Files\Health Data 16@6806.txt.148594238.vspr

* 32GB memory
* Windows 11 Pro 64-bit

= Analysis

TMILFOl (int): Total data
- THHE (int): Total data

44.5, Min. = 28, Max. = 69, Std. Dev = 14.4

leeecss, Average 179.5, Min. = 158, Max. 289, Std. Dev = 17.3

XIE (float): Total data = 1868868, Average = 79.71, Min. = 46.66, Max. 128.98, Std. Dev = 19.58 . . .

_ AIZEF 178-19@ (int): Total data - 349528, Average - 180.8, Min. = 170, Max. - 198, Std. Dev = 6.8 ‘ NO p|a|ntext (Or pa rt Of |t) was ertten on
- O™ (int): Total data = 187882, Average = 147.8, Min. = 148, Max. = 154, 5td. Dev = 4.3

- MEY (int): Total data = 199875, Average = 82.5, Min. = 75, Max. = 98, Std. Dev = 4.6

- —‘?‘—E—;—% (float): Total data = 262883, Average = 5.8, Min. = 4.8, Max. = 6.8, Std. Dev = 6.6 the Storage and/or memory during process.

- Total analysis time: 3.288853 seconds for 108868808 data (average rate = 3848573.72 data/s)

leeeeee, Average

Time for Analysis

Performance Comparison with Homomorphic Encryption

Homomorphic Analytic X + v - O ()
... | Company'C | Vesperlle

Calculation time Bootstrap Key Generation 37 seconds 0
The time taken for each calculation is shown below. .
. Encrypting Data 6.27 seconds 0 (unmeasurable)
» Generating a bootstrappable key: 37 segs (6.6 gb)
« Encrypting data: 6.27 secs (8 kb > 654.3 mb) / preprocessed Analysis 141.81 Seconds 0_022377 Seconds
» Statistical analysis: 141.81 secs
tstes computaton Total 185.08 seconds < 0.1 seconds

Calculation Data Execution time (Sec)

Delete column Branch 1.08

Subtracton between cokmns | Assetioan o34 * Vesper does not require any plaintext preprocessing before the

Column mean Loan 15.37 Ca|CU|ati0n.

Standard deviation Annual Salary 29.25

Categorical calculation o Vesper Only Used 40-7KB Of Space.
Calculation pate Execution time (Sec) * Itincludes the Vesper encryption key (1MB).
Average by categor Card spending - Female 12.00
TR | e « Company ‘C’ product used (at least) 6.6GB of space.

Average by category Card spending - Male 9.63

Average by category Card spending - 20s 13.62

Average by category Card spending - 30s 13.51

Average by category Card spending - 40s 13.86 ° NOteS

Average by category Card spending - 50s 13.45 . i

° * Measure for the machine learning was not performed for Vesper.
Average by category Card spending - 60s 13.70
* The resource and calculation time data are from ‘NAVER Cloud Platform’ and may not

« Machine learning (logistic regression): 89 secs contain the up_to_date information.

Source: https://guide.ncloud-docs.com/docs/en/hha-example

Unreal Security

for

Embedded System

Solution for those who worry about
‘Anti-temper’

on the system level

Security of Executables and Current Solution

* Only the data (stored and/or transmitted) are encrypted but not the executable ‘application.

* Most security requirements are for the static data.
* Application software contains ‘how to handle’ information about proprietary or even classified system devices.

* High-level security applications require multiple level of security barriers (even physical destruction).
» ‘Leaked’ software may be analyzed by competitors/adversaries - may expose proprietary information and technology.
* Regardless of the sophisticated authorization method to ‘unlock’ the obfuscation (hiding), the codes are there.

» Software can be loaded encrypted and can be decrypted before use. However, the problem is that:
* There is no way to check and verify the final ‘loaded’ software is ‘not polluted” while encrypted.

Software verification process, such as hash check, requires the software to be decrypted and stored (in memory) before execution.
* Itisimpossible to delete/change the loaded software after release even if the authorization data has been compromised.

* Once the key (passwords) needs to be changed or has been compromised, the prepared encrypted software set becomes useless. The entire certification
processes must be done again even when there is no single line of code change.

* Embedded system generally does not have extra resources (memory/storage and processor power) to handle encryption.

Example Scenario 1: The latest and greatest Al car

Vesper-encrypted data loaded onto the memory of an embedded system

Fake data I!Hm Application 1 Fake data Application 2 Fake data Application 3 Fake data Marker D Application 4 Fake data

(* Sizes are not in any meaningful scale.)

e Situation

* A highly secure embedded system (for this Al car) powers up, tests and initializes system, starts system services, loads OS,
and system software checks and identifies the equipped devices.

* The cars of this model can be equipped with wide range of sensors/devices, from generic to the top-of-the-line ones that
no other competitor can release with their cars yet. Thus, the control mechanism for the device and the information
regarding data and timing specs are highly proprietary (or even classified).

» System needs to load the application(s) based on the equipped devices. Each application handles the specific device and
may even contain some Al algorithms specific for the device.

* Vesper can:

» Search the target marker for the device directly from the encrypted data block so that proper application can be loaded.
* Request the verification hash info from the authentication server to verify the application is ‘clean’ as released.

 When the car powers down, during the shutdown process, Vesper can key-morph the data to invalidate the ‘old’ key
and/or to prevent hackers from intrusion during sleep. The new key will not be stored locally (in the car) and can only be
downloaded from the server once the owner gets authenticated.

Example Scenario 2: Real-time Update of Security Data

Sensitive data
|

v v v
Heap Memory (before) - l . -
- Morphed n
Heap Memory (after) l
/t /I\ Loaded

* Situation
» Application itself is not sensitive or proprietary, but the data parts are. (personal data, location info., filter values, etc.)
* Most embedded systems have data mapped into the specific memory location.
» As situation changes, some crucial data parts must be updated/changed. (Such as target change, timeline update, etc.)
e Just as a routine security procedure, some encrypted data in the memory needs to be re-encrypted with updated keys.

* Vesper can:
* Transmit/receive encrypted data and override parts of the data dynamically
» Utilize obfuscated (fake) regions in the update data to enhance the security (possible interception during transmission)

* Transform the encrypted data with the new key using key-morph
* Vesper does NOT need an additional resource (memory) to convert/morph encrypted data.

Example Scenario 3: Secure Boot

* Situation
* Embedded system is most vulnerable while powered down.
* Upon power up, bootloader cannot easily verify the authenticity of the system application.

* Checksum and/or hash checking are static and must be updated/changed every time when the application get updated/changed.
e Iftheintruder is knowledgeable enough to replace the application, he/she can easily bypass the checksum/hash checking.
* Verification using encryption can be costly and may require additional resources (memory).

* The static decryption program can easily be fooled if the original key is replaced with the hacked one for the hacked application.

* Vesper can:
* Key-morph the entire application before shutdown and hide the randomized key within the fake block.
* Encrypted application and its key change every time the system gets turned off.
* Perform key-morphing of the entire application periodically to invalidate current key and replace with the new one.
* Decrypt the entire application upon power up after key verification.

* Vesperis very light-weight and does not require ‘unexpected’ additional resource.

* Periodic key-morphing can be performed as a background service while the system is running.

R S e B G SRS
e et

0o

L)
Son:—”.-...c
) LR
CEANAY)

amen

tecture

Citadel Server Arch

Vesper

ing

Impenetrable Server Architecture us

Secure Server Architecture — ‘Citadel’

Data Index
Server

) —
N & Authentication
Users Server

L ==

)
(A

Gate Control Server

yr—

Key Index Server

Operator

Key Shadow Server A Key Shadow Server B

* All servers within the system are independent from each other.
e All servers must go through the authentication process before communicating, and ‘authentication server’ verifies and grants access privileges.

' Gate control server monitors and controls all traffics between servers.
[]

Connectors and other small helper objects are not shown.

Responsibilities of Servers in Detail

* Interface Server (a.k.a. Frontend)
* Only gate between external and internal worlds

* Gate Control Server
* Monitor and control all internal and external communication between users and servers
* Verify communication using checksum or MAC (message authentication code) to prevent intrusion

e Authentication Server
» Verify and grant/deny accessibility of users and servers to access specific resource and/or data
» Servers cannot directly access other servers and/or their components even if they are parts of the Citadel system.

* Key Management Server (Key Server)
* Key Index Server keeps track of all the list of the keys

» Key Shadow Servers consist of two (or more) servers that keep the XOR masked key data.
All masked key data must be XORed to retrieve the real key.

e Data Index Server
* Keep the list of the data and their key codes stored in the Data Server

* Data Server
« Store all data encrypted
* Keys for the stored data are stored and managed by Key Server.

Security of Citadel Server System

No single-point failure
* Most, if not all, current popular servers (database, web server, etc.) work as a ‘single’ entity of its own.

Once intruded, all data are available for grab.

All data are encrypted — No data is stored unencrypted
» Leaked/stolen data is effectively useless without proper key.
* Keys and encrypted data are stored separately.

Keys are masked and stored distributed over multiple servers.
* Unless hackers take the entire ‘physical’ Citadel servers, it is impossible to unmask key

Finding the right key is another problem. Even system operators cannot find the right key for a data.

Vesper provides Key-morphing feature.
* Once intrusion and/or unauthorized access are found, Vesper can invalidate selected (or even entire) keys instantly.

The goal of the Citadel architecture is to make it impossible to manually search and retrieve data.

(%)
o+
C
Q
o+
S
o
O

Tl b T ———

Digital Rights for Multimedia

ing

Secur

DRM (Digital Rights Management) Using Citadel

* Streaming Key Management
* \Vesper is super fast; encryption and decryption can be done in real-time even for the 4K HD movies.
» Different key will be assigned for individual customer for the same media.

* Combined with Digital Steganography
» Special ‘hidden’ signature can be injected/embedded into the media — hidden signature can be used to trace the origin.
Each user will use the unique Vesper key, and it can be used to identify the source of the illegal distribution of the digital media.

* Hidden code can be embedded to personalize and/or customize for individual customer.
Personal message for family members, friends, lover, etc.
Personalized greetings for customers (fans)

Hidden sensitive message for specific individuals or groups
« Steganography can be used for image, music files, movies, and any other digital media formats.
* Replacement for NFT (non-fungible token)

* Proof of Authenticity

* Use with steganography and hash algorithms, such as SHA-256, the ownership and authenticity can be easily verified.

OTT Contents A{H 2} Citadel A|H ZF HA=2| O

User OTT AEI = AH Citadel Interface Server Citadel Key Server
. x =2 X =2 X
1 HEE ALE 9_0()\|'OX|' |D,a$i|—|D) 2: AP X} QIE
)
3: 40717 28 (AL8X D, ZAHIX D)
o < o 4: Vesper 2111 7| 28 (HEH = D) 5.7 MM EE
. o o=
. [T e y,
7: Vesper 210]MA 23 (vesper 10| HA AHE £2) 6: Vesper 7| & (Vesper 7|) F)
8 AH X 2to| A EZ MY
N
J
e ARO|= ER E2 (HH X 20| MA ER
10: AR £ 01 (HEIX 20| M A E2) 9: MBRZ EESF (UH= 20| A EZ
11: Vesper AL 27X (AH&X} D, ZAHIX 2HO|MA EZ T 12: 7B = glo|MA EZ OIS
N
)
* - 13: Vesper 7| A @8 (HEH X D) 14: 7| €0l
16: Vesper A& QI (Vesper 7|, Vesper 2H0| M A AL ALE EF) 15: Vesper 7| AL &l (Vesper 7]) PR
17: HEHE HE 9% (AHEX}ID, Vesper 2t0| M A ALEXLE EF)
18: AHE X} 21T
Y
J
. M A O|= 5}0O 2 M A =2 LI =
19: Vesper 20| M A Q1F =01 (ALE XL ID, Vesper 20| A MHE + ALEALE EF) 20: Vesper 210| A E2 0l
7\
J
y 21: Vesper 7| AtE 92X (Z4H X |p) 22: 7| &0l
. 2 20)
25: AEIX AL 29I 24: Vesper 7| 25 (Vesper 7|) 23: Vesper 7| AH& &2l (Vesper 7[) P
26: AHE =41 FH| 27 I 27: HEIX 453}
~ _ -
28 ZEHE HE Y, HH= Ao }H27) R HE(28)2
I HtE R o 2 0|F0{ZICt,

	Slide 1: Vesper Vector Embedded Super-Positioning Encryption Rules
	Slide 2: Symmetric? Asymmetric?
	Slide 3: AES vs. RSA: The Two Major Players
	Slide 4: What is Vesper?
	Slide 5: Vesper Encryption Process
	Slide 6: Encryption Process
	Slide 7: Search & Replace
	Slide 8: Vector Embedded, Super-Positioned Plain Text
	Slide 9: Search, then replace
	Slide 10: Instantaneous Encrypted Data Morphing
	Slide 11: Key-morphing Overview
	Slide 12: Morphing? Like ‘Mystique’ from X-Men?
	Slide 13: So, how fast is the key-morphing process?
	Slide 14: How can morphing be … useful?
	Slide 15: Vesper’s Overall Communication Flow: User’s View
	Slide 16: Overall Server-side Internal Process
	Slide 17: Illusion about size
	Slide 18: 16-bit vs. 32-bit Cipher Text
	Slide 19: Making It Vague
	Slide 20: Is limit as n goes to infinity of , open paren 10 , close paren to the n enough?
	Slide 21: Components for Vesper
	Slide 22: Moving Vectors in Vesper
	Slide 23: Truth about Security
	Slide 24: Security Features of Vesper
	Slide 25: See them for yourself
	Slide 26: Cryptanalysis: Dimensional Coefficients
	Slide 27: Cryptanalysis: Random Number Masking
	Slide 28: Vesper vs. Homomorphic Encryption
	Slide 29: Ideal vs. Reality
	Slide 30: In Reality: Why is Vesper for the real-world?
	Slide 31: Anonymity? Needs More Than Cipher Algorithm
	Slide 32: Performance
	Slide 33: Average Performance Summary
	Slide 34: Vesper RDBMS Demo & Performance
	Slide 35: Performance Shootout
	Slide 36: Push the Limit with 1,000,000 People Health Data
	Slide 37: Performance Comparison with Homomorphic Encryption
	Slide 38: Unreal Security for Embedded System
	Slide 39: Security of Executables and Current Solution
	Slide 40: Example Scenario 1: The latest and greatest AI car
	Slide 41: Example Scenario 2: Real-time Update of Security Data
	Slide 42: Example Scenario 3: Secure Boot
	Slide 43: Citadel Server Architecture
	Slide 44: Secure Server Architecture – ‘Citadel’
	Slide 45: Responsibilities of Servers in Detail
	Slide 46: Security of Citadel Server System
	Slide 47: Media DRM Server System
	Slide 48: DRM (Digital Rights Management) Using Citadel
	Slide 49: OTT Contents 서버와 Citadel 서버 간 연동의 예

